Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Your search

Results 6 resources

  • Understanding long-term climate variability in the high latitudes of the Southern Hemisphere is critical due to the key role of the Southern Ocean in the global climate system. However, sparse observations (in space and time) coupled with strong internal variability limit our ability to interpret the origin of recent changes, and their longer-term context. Here we present a dynamically consistent reconstruction of the Antarctic atmosphere and Southern Ocean from 1700 to 2023. We first use data assimilation (DA)-based Antarctic atmospheric reanalyses that combine instrumental observations (1958–2023) and paleoclimate proxies (1700–2000) with Earth System Models to reconstruct key surface climate fields. We then drive a global ocean–sea-ice model with this atmospheric reanalysis to simulate historical ocean conditions, including temperature, salinity, currents, and sea-ice-related variables at 1° resolution. This reconstruction provides the first long-term physically consistent dataset of Antarctic atmosphere–ocean variability, suitable for studying low-frequency climate variability, evaluating climate models, and potentially driving regional atmospheric and ocean models as well as ice sheet models.

  • The global overturning circulation (GOC) is the largest scale component of the ocean circulation, associated with a global redistribution of key tracers such as heat and carbon. The GOC generates decadal to millennial climate variability, and will determine much of the long-term response to anthropogenic climate perturbations. This review aims at providing an overview of the main controls of the GOC. By controls, we mean processes affecting the overturning structure and variability. We distinguish three main controls: mechanical mixing, convection, and wind pumping. Geography provides an additional control on geological timescales. An important emphasis of this review is to present how the different controls interact with each other to produce an overturning flow, making this review relevant to the study of past, present and future climates as well as to exoplanets’ oceans.

  • Observations of water stable isotopes in Antarctic surface snow, precipitation and water vapor are key for improving our understanding of the atmospheric water cycle and past climate reconstructions from ice cores. In this study, we use isotopic observations in Antarctica to assess the skill of the isotope-enabled atmospheric general circulation model LMDZ6, nudged to ERA5 above the boundary layer (1980?2023 period). The model has no significant bias for time-mean temperature and snow accumulation over the ice sheet. Sensitivity test on parameterized supersaturation strength highlights its opposite effect on precipitation ${\delta }^{18}$O and d-excess. Selecting an intermediate supersaturation strength resulted in a minimal bias for surface snow ${\delta }^{18}$O across the continent, with a reduced but systematic positive bias in surface snow d-excess ( ${\sim} $5?). We then assessed seasonal and diurnal isotope variability with daily precipitation and continuous vapor isotopes at Dumont d?Urville (DDU, coastal station) and Concordia (inland station). On a seasonal scale, LMDZ6iso accurately reproduces the seasonal cycle of precipitation ${\delta }^{18}$O and d-excess at both stations. Moving from statistical evaluation to physical analysis, we use the individual process contributions to boundary-layer water vapor isotopes to identify the main drivers controlling the clear-sky isotopic daily cycles. At Concordia, daily isotope variations are mainly driven by surface sublimation, whereas at DDU they are driven by surface sublimation and advection by the katabatic flow. Our results suggest that to further improve water isotopes in LMDZ6iso, fractionation during surface sublimation should be included and fractionation at condensation for low temperature should be better constrained.

  • During the Quaternary, ice sheets experienced several retreat–advance cycles, strongly influencing climate patterns. In order to properly simulate these phenomena, it is preferable to use physics-based models instead of parameterizations to estimate the surface mass balance (SMB), which strongly influences the evolution of the ice sheet. To further investigate the potential of these SMB models, this work evaluates the BErgen Snow SImulator (BESSI), a multi-layer snow model with high computational efficiency, as an alternative to providing the SMB for the Earth system model iLOVECLIM for multi-millennial simulations as in paleostudies. We compare the behaviors of BESSI and insolation temperature melt (ITM), an existing SMB scheme of iLOVECLIM during the Last Interglacial (LIG). Firstly, we validate the two SMB models using the regional climate model Mod- èle Atmosphérique Régional (MAR) as forcing and reference for the present-day climate over the Greenland and Antarctic ice sheets. The evolution of the SMB over the LIG (130–116 ka) is computed by forcing BESSI and ITM with transient climate forcing obtained from iLOVECLIM for both ice sheets. For present-day climate conditions, both BESSI and ITM exhibit good performance compared to MAR despite a much simpler model setup. While BESSI performs well for both Antarctica and Greenland for the same set of parame- ters, the ITM parameters need to be adapted specifically for each ice sheet. This suggests that the physics embedded in BESSI allows better capture of SMB changes across varying climate conditions, while ITM displays a much stronger sen- sitivity to its tunable parameters. The findings suggest that BESSI can provide more reliable SMB estimations for the iLOVECLIM framework to improve the model simulations of the ice sheet evolution and interactions with climate for multi-millennial simulations.

  • The Quaternary climate is characterized by glacial–interglacial cycles, with the most recent transition from the last glacial maximum to the present interglacial (the last deglaciation) occurring between ∼ 21 and 9 ka. While the deglacial warming at high southern latitudes is mostly in phase with atmospheric CO2 concentrations, some proxy records indicate that the onset of the warming occurred before the CO2 increase. In addition, high southern latitudes exhibit a cooling event in the middle of the deglaciation (15–13 ka) known as the “Antarctic Cold Reversal”. In this study, we analyse transient simulations of the last deglaciation performed with six different climate models as part of the 4th phase of the Paleoclimate Modelling Intercomparison Project (PMIP4) to understand the processes driving high-southern-latitude surface temperature changes. As the protocol of the last deglaciation sets the choice of freshwater forcing as flexible, the freshwater forcing is different in each model, thus complicating the multi-model comparison. While proxy records from West Antarctica and the Pacific sector of the Southern Ocean suggest the presence of an early warming before 18 ka, only half the models show a significant warming at this time (∼ 1 °C or ∼ 10 % of the total deglacial warming). All models simulate a major warming during Heinrich Stadial 1 (18–15 ka), concurrent with the CO2 increase and with a weakening of the Atlantic Meridional Overturning Circulation (AMOC) in some models. However, the simulated Heinrich Stadial 1 warming over Antarctica is smaller than the one suggested from ice core data. During the Antarctic Cold Reversal, simulations with an abrupt AMOC strengthening exhibit a high-southern-latitude cooling of 1 to 2 °C, in relative agreement with proxy records, while simulations with rapid North Atlantic meltwater input exhibit a warming. Using simple models to extract the relative AMOC contribution, we find that all climate models simulate a high-southern-latitude cooling in response to an AMOC increase with a response timescale of several hundred years, suggesting the choice of the North Atlantic meltwater forcing substantially affects high-southern-latitude temperature changes. Thus, further work needs to be carried out to reconcile the deglacial AMOC evolution with the Northern Hemisphere ice sheet disintegration and associated meltwater input. Finally, all simulations exhibit only minimal changes in Southern Hemisphere westerlies and Southern Ocean meridional circulation during the last deglaciation. Improved understanding of the processes impacting Southern Hemisphere atmospheric and oceanic circulation changes accounting for deglacial atmospheric CO2 increase is needed.

  • Water stable isotope records in polar ice cores have been largely used to reconstruct past local temperatures and other climatic information such as evaporative source region conditions of the precipitation reaching the ice core sites. However, recent studies have identified post-depositional processes taking place at the ice sheet's surface, modifying the original precipitation signal and challenging the traditional interpretation of ice core isotopic records. In this study, we use a combination of existing and new datasets of precipitation, snow surface, and subsurface isotopic compositions (δ18O and deuterium excess (d-excess)); meteorological parameters; ERA5 reanalyses; outputs from the isotope-enabled climate model ECHAM6-wiso; and a simple modelling approach to investigate the transfer function of water stable isotopes from precipitation to the snow surface and subsurface at Dome C in East Antarctica. We first show that water vapour fluxes at the surface of the ice sheet result in a net annual sublimation of snow, from 3.1 to 3.7 mm w.e. yr−1 (water equivalent) between 2018 and 2020, corresponding to 12 % to 15 % of the annual surface mass balance. We find that the precipitation isotopic signal cannot fully explain the mean, nor the variability in the isotopic composition observed in the snow, from annual to intra-monthly timescales. We observe that the mean effect of post-depositional processes over the study period enriches the snow surface in δ18O by 3.0 ‰ to 3.3 ‰ and lowers the snow surface d-excess by 3.4 ‰ to 3.5 ‰ compared to the incoming precipitation isotopic signal. We also show that the mean isotopic composition of the snow subsurface is not statistically different from that of the snow surface, indicating the preservation of the mean isotopic composition of the snow surface in the top centimetres of the snowpack. This study confirms previous findings about the complex interpretation of the water stable isotopic signal in the snow and provides the first quantitative estimation of the impact of post-depositional processes on the snow isotopic composition at Dome C, a crucial step for the accurate interpretation of isotopic records from ice cores.

Last update from database: 12/1/25, 3:10 AM (UTC)