Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Your search

Results 2 resources

  • The distribution of calcareous dinoflagellates has been analysed for the Maastrichtian–Miocene interval of Ocean Drilling Project Hole 689B (Maud Rise, Weddell Sea). The investigation thus represents a primary evaluation of the long-term evolution in high-latitude calcareous dinoflagellate assemblages during the transition from a relatively warm Late Cretaceous to a cold Neogene climate. Major assemblage changes during this interval occurred in characteristic steps: (1) an increase in relative abundance of tangentially structured species – particularly Operculodinella operculata – at the Cretaceous/Tertiary boundary; (2) a diversity decrease and several first and last appearances across the Middle–Late Eocene boundary, possibly attributed to increased climate cooling; (3) a diversity decrease associated with the dominance of Calciodinellum levantinum in the late Early Oligocene; (4) the reappearance and dominance of Pirumella edgarii in the Early Miocene, probably reflecting a warming trend; (5) monogeneric assemblages dominated by Caracomia spp. denoting strong Middle Miocene cooling. The results not only extend the biogeographic ranges of many taxa into the Antarctic region, but also indicate that the evolution of high-latitude calcareous dinoflagellate assemblages parallels the changing environmental conditions in the course of the Cenozoic climate transition. Therefore, calcareous dinoflagellates contribute to our understanding of the biotic effects associated with palaeoenvironmental changes and might possess the potential for reconstructing past conditions. The flora in the core includes one new taxon: Caracomia arctica forma spinosa Hildebrand-Habel and Streng, forma nov. Additionally, two new combinations are proposed: Fuettererella deflandrei (Kamptner, 1956) Hildebrand-Habel and Streng, comb. nov. and Fuettererella flora (Fütterer, 1990) Hildebrand-Habel and Streng, comb. nov.

  • During the Neoproterozoic, a supercontinent commonly referred to as Rodinia, supposedly formed at ca. 1100 Ma and broke apart at around 800–700 Ma. However, continental fits (e.g., Laurentia vs. Australia–Antarctica, Greater India vs. Australia–Antarctica, Amazonian craton [AC] vs. Laurentia, etc.) and the timing of break-up as postulated in a number of influential papers in the early–mid-1990s are at odds with palaeomagnetic data. The new data necessitate an entirely different fit of East Gondwana elements and western Gondwana and call into question the validity of SWEAT, AUSWUS models and other variants. At the same time, the geologic record indicates that Neoproterozoic and early Paleozoic rift margins surrounded Laurentia, while similar-aged collisional belts dissected Gondwana. Collectively, these geologic observations indicate the breakup of one supercontinent followed rapidly by the assembly of another smaller supercontinent (Gondwana). At issue, and what we outline in this paper, is the difficulty in determining the exact geometry of the earlier supercontinent. We discuss the various models that have been proposed and highlight key areas of contention. These include the relationships between the various ‘external’ Rodinian cratons to Laurentia (e.g., Baltica, Siberia and Amazonia), the notion of true polar wander (TPW), the lack of reliable paleomagnetic data and the enigmatic interpretations of the geologic data. Thus, we acknowledge the existence of a Rodinia supercontinent, but we can place only loose constraints on its exact disposition at any point in time.

Last update from database: 3/1/25, 3:17 AM (UTC)