Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 39 resources
-
Penguins lost the ability to fly more than 60 million years ago, subsequently evolving a hyper-specialized marine body plan. Within the framework of a genome-scale, fossil-inclusive phylogeny, we identify key geological events that shaped penguin diversification and genomic signatures consistent with widespread refugia/recolonization during major climate oscillations. We further identify a suite of genes potentially underpinning adaptations related to thermoregulation, oxygenation, diving, vision, diet, immunity and body size, which might have facilitated their remarkable secondary transition to an aquatic ecology. Our analyses indicate that penguins and their sister group (Procellariiformes) have the lowest evolutionary rates yet detected in birds. Together, these findings help improve our understanding of how penguins have transitioned to the marine environment, successfully colonizing some of the most extreme environments on Earth.
-
Abstract Information on marine predator at-sea distributions is key to understanding ecosystem and community dynamics and an important component of spatial management frameworks that aim to identify regions important for conservation. Tracking data from seabirds are widely used to define priority areas for conservation, but such data are often restricted to the breeding population. This also applies to penguins in Antarctica, where identification of important habitat for nonbreeders has received limited attention. Nonbreeding penguins are expected to have larger foraging distributions than breeding conspecifics, which may alter their interactions with physical environmental factors, conspecifics, other marine predators, and threats. We studied the movement behavior of nonbreeding Adélie penguins tracked during the 2016/2017 breeding season at King George Island in the South Shetland Islands, Antarctica. We quantify how nonbreeding penguins' horizontal moment behavior varies in relation to environmental conditions and assess the extent of spatial overlap in the foraging ranges of nonbreeders and breeders, which were tracked over several years. Nonbreeders increased their prey search and area-restricted foraging behavior as sea surface temperature and bottom depths decreased, and in response to increasing sea ice concentration. Nonbreeders tended to transit (high directional movement) over the relatively deep Central Basin of the Bransfield Strait. The majority of foraging behavior occurred within the colder, Weddell Sea?sourced water of the Antarctic Coastal Current (incubation) and in the Weddell Sea (crèche). The utilization distributions of breeders and nonbreeders overlapped in the central Bransfield Strait. Spatial segregation was greater during the crèche stage of breeding compared to incubation and brood, because chick provisioning still constrained the foraging range of breeders to a scale of a few tens of kilometers, while nonbreeders commenced with premolt foraging trips into the Weddell Sea. Our results show that breeding and nonbreeding penguins may not be impacted similarly by local environmental variability, given that their spatial and temporal scales of foraging differ during some part of the austral summer. Our study highlights the need to account for different life history stages when characterizing foraging behavior of marine predator populations. This is particularly important for ?sentinel? species monitored as part of marine conservation and ecosystem-based management programs.
-
Per and polyfluoroalkyl substances (PFASs) are found in Antarctic wildlife, with high levels in the avian top predator south polar skua (Catharacta maccormicki). As increasing PFAS concentrations were found in the south polar skua during the breeding season in Antarctica, we hypothesised that available prey during the breeding period contributes significantly to the PFAS contamination in skuas. To test this, we compared PFAS in south polar skuas and their main prey from two breeding sites on opposite sides of the Antarctic continent: Antarctic petrel (Thalassoica antarctica) stomach content, eggs, chicks, and adults from Svarthamaren in Dronning Maud Land and Adélie penguin chicks (Pygoscelis adeliae) from Dumont d’Urville in Adélie Land. Of the 22 PFAS analysed, seven were present in the majority of samples, except petrel stomach content [only perfluoroundecanoate (PFUnA) present] and Adélie penguins (only four compounds present), with increasing concentrations from the prey to the skuas. The biomagnification factors (BMFs) were higher at Dumont d’Urville than Svarthamaren. When adjusted to reflect one trophic level difference, the BMFs at Svarthamaren remained the same, whereas the ones at Dumont d’Urville doubled. At both the colonies, the skua PFAS pattern was dominated by perfluorooctanesulfonic acid (PFOS), followed by PFUnA, but differed with the presence of branched PFOS and perfluorotetradecanoate (PFTeA) and lack of perfluorononanoate (PFNA) and perfluorodecanoate (PFDA) at Dumont d’Urville. At Svarthamaren, the pattern in the prey was comparable to the skuas, but with a higher relative contribution of PFTeA in prey. At Dumont d’Urville, the pattern in the prey differed from the skuas, with the domination of PFUnA and the general lack of PFOS in prey. Even though the PFAS levels are low in Antarctic year-round resident prey, the three lines of evidence (pattern, BMF difference, and BMF adjusted to one trophic level) suggest that the Antarctic petrel are the significant source of PFAS in the Svarthamaren skuas, whereas the skuas in Dumont d’Urville have other important sources to PFAS than Adélie penguin, either in the continent or external on the inter-breeding foraging grounds far from Antarctica.
-
Individual heterogeneity in foraging behaviour determines how individuals and populations respond to changes in the availability and distribution of resources. Antarctic krill Euphausia superba is a pivotal species in Southern Ocean food webs and an important target for Southern Ocean fisheries. Changes in its abundance could dramatically impact marine predators, with effects depending on the extent to which all individuals rely on krill as prey. The Antarctic petrel Thalassoica antarctica is a high latitude seabird thought to be dependent on krill in part of its breeding range. Here, by combining fine-scale GPS tracking of petrel foraging trips with diet data, we examined the level and consistency of inter-individual variation in foraging strategies in breeding Antarctic petrels in Dronning Maud Land, Antarctica, and assessed whether all individuals share a similar reliance on Antarctic krill. We found that Antarctic petrels showed high levels of repeatability in their diet and foraging movements at sea, indicating consistent individual differences in foraging strategies. During consecutive foraging trips, petrels tend to make trips of similar lengths and durations to reach similar terminal locations and to feed on similar prey. These individual differences in diet were spatially structured, with individuals travelling towards the west consuming a more fish-based diet. These different foraging tactics did not appear to be associated with different costs and/or benefits as adult body mass, chick survival and chick growth were unrelated to birds’ foraging movements and diet. Our results show that, even if a large part of the population may be dependent on krill, some individuals specialize on fish. Such inter-individual variation in foraging suggests that this population could be more resilient to changes in the marine environment, such as a decline in krill abundance or a shift in krill distributions.
-
Understanding the drivers and effects of exposure to contaminants such as mercury (Hg) and organochlorine compounds (OCs) in Antarctic wildlife is still limited. Yet, Hg and OCs have known physiological and fitness effects in animals, with consequences on their populations. Here we measured total Hg (a proxy of methyl-Hg) in blood cells and feathers, and 12 OCs (seven polychlorinated biphenyls, PCBs, and five organochlorine pesticides, OCPs) in plasma of 30 breeding female Antarctic petrels Thalassoica antarctica from one of the largest colonies in Antarctica (Svarthamaren, Dronning Maud Land). This colony is declining and there is poor documentation on the potential role played by contaminants on individual physiology and fitness. Carbon (δ13C) and nitrogen (δ15N) stable isotope values measured in the females' blood cells and feathers served as proxies of their feeding ecology during the pre-laying (austral spring) and moulting (winter) periods, respectively. We document feather Hg concentrations (mean ± SD, 2.41 ± 0.83 μg g−1 dry weight, dw) for the first time in this species. Blood cell Hg concentrations (1.38 ± 0.43 μg g−1 dw) were almost twice as high as those reported in a recent study, and increased with pre-laying trophic position (blood cell δ15N). Moulting trophic ecology did not predict blood Hg concentrations. PCB concentrations were very low (Σ7PCBs, 0.35 ± 0.31 ng g−1 wet weight, ww). Among OCPs, HCB (1.02 ± 0.36 ng g−1 ww) and p, p’-DDE (1.02 ± 1.49 ng g−1 ww) residues were comparable to those of ecologically-similar polar seabirds, while Mirex residues (0.72 ± 0.35 ng g−1 ww) were higher. PCB and OCP concentrations showed no clear relationship with pre-laying or moulting feeding ecology, indicating that other factors overcome dietary drivers. OC residues were inversely related to body condition, suggesting stronger release of OCs into the circulation of egg-laying females upon depletion of their lipid reserves. Egg volume, hatching success, chick body condition and survival were not related to maternal Hg or OC concentrations. Legacy contaminant exposure does not seem to represent a threat for the breeding fraction of this population over the short term. Yet, exposure to contaminants, especially Mirex, and other concurring environmental stressors should be monitored over the long-term in this declining population.
-
For procellariiform seabirds, wind and morphology are crucial determinants of flight costs and flight speeds. During chick-rearing, parental seabirds commute frequently to provision their chicks, and their body mass typically changes between outbound and return legs. In Antarctica, the characteristic diurnal katabatic winds, which blow stronger in the mornings, form a natural experimental setup to investigate flight behaviors of commuting seabirds in response to wind conditions. We GPS-tracked three closely related species of sympatrically breeding Antarctic fulmarine petrels, which differ in wing loading and aspect ratio, and investigated their flight behavior in response to wind and changes in body mass. Such information is critical for understanding how species may respond to climate change. All three species reached higher ground speeds (i.e., the speed over ground) under stronger tailwinds, especially on return legs from foraging. Ground speeds decreased under stronger headwinds. Antarctic petrels (Thalassoica antarctica; intermediate body mass, highest wing loading, and aspect ratio) responded stronger to changes in wind speed and direction than cape petrels (Daption capense; lowest body mass, wing loading, and aspect ratio) or southern fulmars (Fulmarus glacialoides; highest body mass, intermediate wing loading, and aspect ratio). Birds did not adjust their flight direction in relation to wind direction nor the maximum distance from their nests when encountering headwinds on outbound commutes. However, birds appeared to adjust the timing of commutes to benefit from strong katabatic winds as tailwinds on outbound legs and avoid strong katabatic winds as headwinds on return legs. Despite these adaptations to the predictable diurnal wind conditions, birds frequently encountered unfavorably strong headwinds, possibly as a result of weather systems disrupting the katabatics. How the predicted decrease in Antarctic near-coastal wind speeds over the remainder of the century will affect flight costs and breeding success and ultimately population trajectories remains to be seen.
-
Ecological niche theory predicts sympatric species to show segregation in their spatio-temporal habitat utilization or diet as a strategy to avoid competition. Similarly, within species individuals may specialize on specific dietary resources or foraging habitats. Such individual specialization seems to occur particularly in environments with predictable resource distribution and limited environmental variability. Still, little is known about how seasonal environmental variability affects segregation of resources within species and between closely related sympatric species. The aim of the study was to investigate the foraging behaviour of three closely related and sympatrically breeding fulmarine petrels (Antarctic petrels Thalassoica antarctica, cape petrels Daption capense and southern fulmars Fulmarus glacialoides) in a seasonally highly variable environment (Prydz Bay, Antarctica) with the aim of assessing inter- and intraspecific overlap in utilized habitat, timing of foraging and diet and to identify foraging habitat preferences. We used GPS loggers with wet/dry sensors to assess spatial habitat utilization over the entire breeding season. Trophic overlap was investigated using stable isotope analysis based on blood, feathers and egg membranes. Foraging locations were identified using wet/dry data recorded by the GPS loggers and expectation-maximization binary clustering. Foraging habitat preferences were modelled using generalized additive models and model cross-validation. During incubation and chick-rearing, the utilization distribution of all three species overlapped significantly and species also overlapped in the timing of foraging during the day—partly during incubation and completely during chick-rearing. Isotopic centroids showed no significant segregation between at least two species for feathers and egg membranes, and among all species during incubation (reflected by blood). Within species, there was no individual specialization in foraging sites or environmental space. Furthermore, no single environmental covariate predicted foraging activity along trip trajectories. Instead, best-explanatory environmental covariates varied within and between individuals even across short temporal scales, reflecting a highly generalist behaviour of birds. Our results may be explained by optimal foraging theory. In the highly productive but spatio-temporally variable Antarctic environment, being a generalist may be key to finding mobile prey—even though this increases the potential for competition within and among sympatric species.
-
There is a paucity of information on the foraging ecology, especially individual use of sea-ice features and icebergs, over the non-breeding season in many seabird species. Using geolocators and stable isotopes, we defined the movements, distribution and diet of adult Antarctic petrels Thalassoica antarctica from the largest known breeding colony, the inland Svarthamaren, Antarctica. More specifically, we examined how sea-ice concentration and free-drifting icebergs affect the distribution of Antarctic petrels. After breeding, birds moved north to the marginal ice zone (MIZ) in the Weddell sector of the Southern Ocean, following its northward extension during freeze-up in April, and they wintered there in April–August. There, the birds stayed predominantly out of the water (60–80% of the time) suggesting they use icebergs as platforms to stand on and/or to rest. Feather δ15N values encompassed one full trophic level, indicating that birds fed on various proportions of crustaceans and fish/squid, most likely Antarctic krill Euphausia superba and the myctophid fish Electrona antarctica and/or the squid Psychroteuthis glacialis. Birds showed strong affinity for the open waters of the northern boundary of the MIZ, an important iceberg transit area, which offers roosting opportunities and rich prey fields. The strong association of Antarctic petrels with sea-ice cycle and icebergs suggests the species can serve, year-round, as a sentinel of environmental changes for this remote region.
-
The salt gland is a well-developed osmoregulation organ in marine birds, and its relative size often reflects an individual’s feeding environment and osmoregulation capability. The development and functions of salt glands have been described for the Adélie penguin (Pygoscelis adeliae), but this information has been poorly documented in the other two pygoscelid species: gentoo (P. papua) and chinstrap penguins (P. antarcticus). To describe the growth-related changes in salt gland masses in relation to chick growth, we measured the wet mass of the salt glands collected from dead gentoo and chinstrap chicks during the early breeding period. The mass of the salt glands was linearly proportional to their body measurements, especially to body mass, in both species, and no significant difference was detected between the two species. Penguins are obligate marine dwellers throughout their life cycle, and the development of the salt gland in penguin chicks suggests that their ability to regulate dietary osmotic stress begins at an early stage of development after hatching. Furthermore, the linear relationship between the gland mass and body mass also suggests that the osmoregulation capability may continue to develop as penguin chicks grow. This descriptive note provides novel and quantitative information on the early developmental pattern of salt glands in gentoo and chinstrap penguins.
-
Abstract Individual heterogeneity in diet and foraging behaviour is common in wild animal populations, and can be a strong determinant of how populations respond to environmental changes. Within populations, variation in foraging behaviour and the occurrence of individual tactics in relation to resources distribution can help explain differences in individual fitness, and ultimately identify important factors affecting population dynamics. We examined how foraging behaviour and habitat during the breeding period related to the physiological state of a long-ranging seabird adapted to sea ice, the Antarctic petrel Thalassoica antarctica. Firstly, using GPS tracking and state-switching movement modelling (hidden Markov models) on 124 individual birds, we tested for the occurrence of distinct foraging tactics within our study population. Our results highlight a large variation in the movement and foraging behaviour of a very mobile seabird, and delineate distinct foraging tactics along a gradient from foraging in dense pack ice to foraging in open water. Secondly, we investigated the effects of these foraging tactics on individual state at return from a foraging trip. We combined movement data with morphometric and physiological measurements of a suite of plasma metabolites that provided a general picture of a bird's individual state. Foraging in denser sea ice was associated with lower gain in body mass during brooding, as well as lower level of energy acquisition (plasma triacylglycerol) during both brooding and incubation. We found no clear relationship between the foraging tactic in relation to sea ice and the energetic stress (changes in plasma corticosterone), energetic balance (β-hydroxybutyrate) or trophic level (δ15N). However, a shorter foraging range was related to both the energetic balance (positively) and the trophic level (negatively). Our results highlight a diverse range of foraging tactics in relation to sea ice in Antarctic petrels. While the various foraging tactics do not seem to strongly alter energetic balance, they may affect other aspects of Antarctic petrels' physiology. Future changes in sea-ice habitats can thus be expected to have an impact on the individual state of seabirds such as Antarctic petrels, which could ultimately affect their population dynamics. Nonetheless, strong individual heterogeneity in the use of sea-ice habitats by a typical pagophilic species might strengthen its resilience to environmental changes and in particular to forecasted sea-ice loss. A free Plain Language Summary can be found within the Supporting Information of this article.
-
Per- og polyfluorerte alkylstoffer (PFAS) har blitt funnet i blodprøver fra sørjo (Catharacta maccormicki) tatt i løpet av hekkesesongen i kolonien i Svarthamaren (Dronning Mauds land, Antarktis). For å undersøke om disse konsentrasjonene i sørjo stammer fra dietten i hekkesesongen, sammenligner denne oppgaven biomagnifisering i to næringskjeder. Ved innenlands kolonien Svarthamaren spiser sørjoene nesten utelukkende egg og unger fra antarktisk petrell (Thalassoica antarctica), og petrellene spiser fisk og krepsdyr. I den kystnære kolonien ved Dumont D’Urville (DDU, Adélie Land), spiser sørjoene hovedsakelig egg og unger fra Adélie pingviner (Pygoscelis adeliae). Væskekromatografi-massespektrometri (LC/MS) ble brukt for å måle PFAS i mageinnhold og egg fra antarktisk petrell, og i blodprøver fra sørjo, Adélie pingvin-unger, og antarktisk petrellunger og -voksne. Stabile isotoper (δ13C and δ15N) ble også analysert som diettdeskriptorer. Resultatene ble slått sammen med resultater fra tidligere studier fra begge koloniene for å oppnå et datasett for sørjo og dens diett ved både Svarthamaren og DDU. Datasettet ble brukt for å beregne biomagnifiseringsfaktor (BMF) og trofisk magnifisering faktor (TMF) for de detekterte PFASene i de to næringskjedene. Ved Svarthamaren var PFUnA over deteksjonsgrensen i alle matriksene, men var ikke tilstede i enkelte prøver. Andre detekterte PFASer var Perfluoroktyl sulfonat (PFOS), Perfluorononanoate (PFNA), Perfluorodecanoate (PFDcA), Perfluoroundecanoate (PFUnA), Perfluorododecanoate (PFDoA), Perfluorotridecanoate (PFTriA) and Perfluorotetradecanoate (PFTeA). PFAS konsentrasjonene økte oppover i næringskjeden, hvorav nivåene for alle detekterte PFASer var høyest hos sørjo. Ved DDU var PFAS konsentrasjonene lavere, men mønsteret var sammenlignbart med det i Svarthamaren. Forgrenet PFOS ble kvantifisert i sørjo fra DDU, men var ikke over deteksjonsgrense i andre matrikser. Byttedyrene hadde flere PFASer over deteksjonsgrensen i Svarthamaren sammenliknet med DDU. Vi beregnet BMF og TMF for alle detekterte PFASer i Svarthamaren, men kun for PFOS, PFNA, PFDcA og PFUnA i DDU fordi bare disse ble funnet i både sørjo og pingvinene. BMF for PFOS var høyere enn forventet i vanlige predator-bytte forhold i begge koloniene, noe som peker på en ukjent kilde. Biomagnifikasjonsverdiene for andre PFASer var varierende, men sammenliknbare mellom koloniene. PFAS-konsentrasjonene i sørjo fra begge kolonier og i antarktisk petrell reflekterer sannsynligvis eksponering utenfor Antarktis i løpet av vinteren. De detekterte konsentrasjoner i Adélie pingviner er ikke høye nok for å forklare de høye PFAS-nivåene i sørjoene i DDU. Derfor, i DDU, disse PFAS-nivåer kommer fra andre byttedyr enten innenfor regioner eller mest sannsynligvis fra utenfor Antarktis.
-
There is increasing interest in using higher-trophic level predators as ecosystem indicators because their performance is presumed to be linked to the overall function of the ecosystem that supports them. In the southwest Atlantic sector of the Southern Ocean, Antarctic krill (Euphausia superba) supports huge predator populations as well as a growing commercial fishery. To utilize information from the ecosystem in an adaptive framework for sustainably managing krill catch levels, performance indices of krill predators have been proposed as a proxy for krill abundance. However, there are several potentially confounding sources of variability that might impact predator performance such as the effects of environmental variability and fishing pressure on krill availability at scales relevant to predators. In this context, our study capitalises on the occurrence of an unexpected El Niño event to characterise how environmental variability can drive changes in predator foraging behaviour. We demonstrate a clear link between coastal downwelling and changes in the at-sea habitat usage of chinstrap penguins (Pygoscelis antarctica) foraging in a local krill fishing area. Penguins tracked from their breeding colonies on Powell Island, Antarctic Peninsula, undertook fewer, longer foraging trips during the downwelling-affected season compared with the season where no such downwelling was detected, suggesting that changes in climate-driven oceanography may have reduced krill availability along the northern shelf of the island. Our study demonstrates that penguin foraging behaviour is modified by scale-dependent processes, which if not accounted for may result in erroneous conclusions being drawn when using penguins as bioindicators of krill abundance.
-
The Antarctic petrel (Thalassoica antarctica) has been identified as a key species for monitoring the status and health of the Southern Ocean and Antarctic ecosystems. Breeding colonies of the Antarctic petrel are often found on isolated nunataks far from inhabited stations, some up to hundreds of kilometers from the shoreline. It is difficult therefore to monitor and census known colonies, and it is believed that undiscovered breeding locations remain to be found. We developed an algorithm that can detect Antarctic petrel colonies and used it to complete a continent-wide survey using Landsat-8 Operational Line Imager (OLI) imagery in Antarctica up to the southernmost extent of Landsat's orbital view at 82.68°S. Our survey successfully identified 8 known Antarctic petrel colonies containing 86% of the known population of Antarctic petrels. The survey also identified what appears to be a significant population of breeding birds in areas not known to host breeding Antarctic petrel colonies. Our survey suggests that the breeding population at Mt. Biscoe (66°13′S 51°21′E), currently reported to be in the 1000s, may actually be on the order of 400,000 breeding pairs, which would make it the largest known Antarctic petrel breeding colony in the world. The algorithm represents a first-ever attempt to apply satellite remote sensing to assess the distribution and abundance of the Antarctic petrel on a continent-wide basis. As such, we note several algorithm shortcomings and identify research topics for algorithm improvement. Even with these caveats, our algorithm for identifying Antarctic petrel colonies with Landsat imagery demonstrates the feasibility of monitoring their populations using satellite remote sensing and identifies breeding locations, including Mt. Biscoe, that should be considered high priorities for validation with directed field surveys.
-
Babesia spp. are tick-borne parasites, and 16 avian-infecting species have been described to date, including one species ( Babesia peircei ) that infects penguins. Considering the results of a recent study reporting Babesia sp. in penguins on Deception Island, South Shetland Islands, we re-examined the samples obtained in a previous investigation on the occurrence of blood parasites in adult Adélie ( Pygoscelis adeliae ), chinstrap ( Pygoscelis antarcticus ) and gentoo penguins ( Pygoscelis papua ) on King George and Elephant islands, South Shetland Islands. Notwithstanding a comprehensive re-examination of the blood smears, Babesia sp. was not detected. When we employed two nested PCR tests targeting the 18S rRNA gene of Babesia , a considerable proportion of the samples produced positive results; however, gene sequencing revealed these were due to cross-amplification of non-target organisms. We therefore did not detect Babesia sp. infection in penguins on King George and Elephant islands. Additional studies will be valuable to clarify the distribution and epidemiology of tick-borne pathogens in sub-Antarctic and Antarctic seabirds.
-
Kommersielle fiskerier kan påvirke marine økosystemer og bestander av topp-predatorer som sjøfugl. I Sørishavet foregår et ekstensivt fiske etter Antarktisk krill (Euphausia superba), og dette er antatt å øke. En sammenligning av fordeling og uttak hos fiskeriene og tilsvarende hos topp-predatorene er nødvendig for å forutsi fiskerirelaterte påvirkninger på krillavhengige predatorer. I dette studiet kartla vi næringssøksområdene hos Antarktispetrell (Thalassoica antarctica) som hekker i verdens største koloni (Svarthammaren, Dronning Maud land) over en treårsperiode. Vi fant at det romlige overlappet mellom krillfiskerier og næringssøkende Antarktispetrell generelt var lite. Konkurranse mellom Antarktispetrell og krill-fiskerier er for tiden neglisjerbart, men kan øke hvis fiskeriet etter krill øker.
-
The koilin membrane, formed by the secretions of the ventricular and pyloric glands, functions as a protective layer in the gizzards of most bird species. However, the ecological functions of koilin have never been studied in free-ranging penguins. During the two austral summers from 2012 to 2014, we observed the regurgitated koilins of chinstrap penguins (Pygoscelis antarcticus) at Narębski Point on King George Island, South Shetland Islands, and we detected a significant difference in the daily accumulation of regurgitated koilins between the pre-hatching and post-hatching periods in the rookery. We also found 233 gastrointestinal parasites, all Stegophorus macronectes (Nematoda, Acuariidae), from 26 out of 45 koilins freshly regurgitated by chinstrap penguins. We suggest that the regurgitation of koilins may benefit adult chinstrap penguins in the wild by reducing parasitic loads when they fast during incubation; it may also help decrease the risk of parasite transmission to chicks. Our results present the first observations of regurgitated koilins among breeding chinstrap penguins. How koilin regurgitation functions in penguins requires further study. Among the gentoo penguins (P. papua) co-occurring at the study site, we observed no regurgitated koilin layers. Keywords: Cuticula gastris; host-parasite interaction; nematodes; parasitic load; regurgitation; Stegophorus macronectes.
-
The role of polychlorinated biphenyls (PCBs) on exposure-related endocrine effects has been poorly investigated in wild birds. This is the case for stress hormones including corticosterone (CORT). Some studies have suggested that environmental exposure to PCBs and altered CORT secretion might be associated. Here we investigated the relationships between blood PCB concentrations and circulating CORT levels in seven free-ranging polar seabird species occupying different trophic positions, and hence covering a wide range of PCB exposure. Blood ∑7PCB concentrations (range: 61–115,632 ng/g lw) were positively associated to baseline or stress-induced CORT levels in three species and negatively associated to stress-induced CORT levels in one species. Global analysis suggests that in males, baseline CORT levels generally increase with increasing blood ∑7PCB concentrations, whereas stress-induced CORT levels decrease when reaching high blood ∑7PCB concentrations. This study suggests that the nature of the PCB-CORT relationships may depend on the level of PCB exposure.
Explore
Topic
- ornitologi
- Antarktis (18)
- antarktispetrell (1)
- biologging (1)
- biologi (6)
- bokanmeldelser (1)
- Bouvetøya (2)
- Dronning Maud Land (14)
- dyreliv (1)
- epidemiologi (1)
- evolusjon (1)
- fiskeriforvaltning (1)
- fôring (3)
- forurensning (7)
- fugler (12)
- fylogenetikk (1)
- gastrointestinale parasitter (1)
- genetikk (1)
- geolokalisering (2)
- havis (2)
- hekkekoloni (1)
- isberg (1)
- isfjell (1)
- jordobservasjon (1)
- kjemiske analyser (3)
- klimaendringer (6)
- krill (2)
- kuldeeksponering (1)
- kuldetoleranse (1)
- marin biologi (6)
- marin forurensning (1)
- marin zoologi (1)
- marinbiologi (2)
- marine økosystemer (2)
- meteorologi (1)
- miljø (4)
- miljøendringer (4)
- miljøgifter (2)
- NARE 1993/94 (1)
- NARE 2000/01 (4)
- NARE ekspedisjoner (1)
- nevrobiologi (3)
- næringskjede (1)
- observasjoner (5)
- økofysiologi (1)
- økologi (11)
- økologiske nisjer (1)
- økosystem (1)
- økosystemer (1)
- osmoregulering (1)
- osmotisk stress (1)
- overvåking (1)
- parasitter (1)
- pattedyr (1)
- petreller (21)
- pingviner (8)
- polarområdene (5)
- reproduksjon (4)
- saltkjertel (1)
- satellittelemetri (2)
- seler (1)
- sjøfugler (19)
- sjøis (2)
- smelting (1)
- Sørishavet (10)
- stabile isotoper (2)
- stresshormoner (1)
- temperatur (1)
- toksikologi (1)
- trekkfugler (1)
- Weddellhavet (1)
- zoofysiologi (1)
- zoologi (24)
Resource type
- Book Section (2)
- Journal Article (36)
- Thesis (1)