Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Your search

Publication year

Results 3 resources

  • Plastic particles are present in biotic and abiotic matrices; hence, plastic pollution is a global issue involving terrestrial and marine fauna and poses a threat to humans. Ocean circulation is a crucial vector of microplastics worldwide. Plastic pollution is among the significant threats to the ocean ecosystem. Studies and papers on plastic pollution in the oceans worldwide have been reported. However, the distribution, characterization, and abundance of micro- and nano plastics in the global ocean still need to be carefully investigated. Once plastics are present in the environment, they denature, degrade, and are more prone to fragmentation. It is well established that large plastic objects and macroplastics fragment into mesoplastics and large microplastics through photodegradation and weathering. Hence microplastics easily break up into fragments <100 µm (small microplastics, SMPs) or even into sub-micrometric particles, the nanoplastics. The small size of these SMPs and nanoplastics allows them to be ingested by different organisms according to their mouthparts’ size. Besides, this fragmentation will enable additives and plasticizers to be released into the environment, where they may pose a threat to biota throughout the trophic web in various ecosystems, e.g., from oceans and soils to glaciers. Micro- and nanoplastics (MNPs) can be transported over long distances, together with the other airborne particles. As a result of long-range transport and short-range transport, airborne MNPs can be carried from worldwide to mountain glaciers; from mid-latitudes, they can reach the very high and very low latitudes, i.e., the Arctic and Antarctica. Due to global climate change, warm ocean streams heavily affect the sea circulation in polar areas, carrying regulated and emerging pollutants, microplastics being among them. In this scenario, polar environments may be significantly enriched by MNPs carried by warmer ocean currents intruding into the polar oceans and those in atmospheric aerosol. MNPs may threaten the sea ice formation and enhance the melting of glaciers. The melting and disappearance of glaciers and the intrusion of warm currents into polar areas are also compounded by the thawing of permafrost, which can release pollutants, including MNPs. This Research Topic aims to study the interconnected pathways of MNPs that are paramount to understanding the global microplastic cycle and how climate change alters polar environments and the rest of the world. Furthermore, we aim to identify bioindicators in marine species, populations, and ecosystems, while acknowledging the interconnectedness of freshwater, terrestrial and atmospheric environments to the polar environment. Research on world glaciers will provide a comprehensive evaluation of the impacts of plastic pollution on the marine polar environment and biota, including impacts on humans.

  • Microplastic (MP; plastic particles < 5 mm) pollution is pervasive in the marine environment, including remote polar environments. This study provides the first pan-Antarctic survey of MP pollution in Southern Ocean sea ice by analyzing sea ice cores from several diverse Antarctic regions. Abundance, chemical composition, and particle size data were obtained from 19 archived ice core samples. The cores were melted, filtered, and chemically analyzed using Fourier-transform infrared spectroscopy and 4,090 MP particles were identified. Nineteen polymer types were found across all samples, with an average concentration of 44.8 (± 50.9) particles·L-1. Abundance and composition varied with ice type and geographical location. Pack ice exhibited significantly higher particle concentrations than landfast ice, suggesting open ocean sources of pollution. Winter sea ice cores had significantly more MPs than spring and summer-drilled cores, suggesting ice formation processes play a role in particle incorporation. Smaller particles dominated across samples. Polyethylene (PE) and polypropylene (PP) were the most common polymers, mirroring those most identified across marine habitats. Higher average MP concentrations in developing sea ice during autumn and winter, contrasting lower levels observed in spring and summer, suggest turbulent conditions and faster growth rates are likely responsible for the increased incorporation of particles. Southern Ocean MP contamination likely stems from both local and distant sources. However, the circulation of deep waters and long-range transport likely contribute to the accumulation of MPs in regional gyres, coastlines, and their eventual incorporation into sea ice. Additionally, seasonal sea ice variations likely influence regional polymer compositions, reflecting the MP composition of the underlying waters.

  • This is the first survey to investigate the occurrence and extent of microplastic (MPs) contamination in sub surface waters collected near-shore and off-shore the coastal area of the Ross Sea (Antarctica). Moreover, a non-invasive method to analyze MPs, consisting in filtration after water sampling and analysis of the dried filter through Fourier Transform Infrared Spectroscopy (FTIR) 2D Imaging, using an FPA detector, was proposed. The non-invasiveness of analytical set-up reduces potential bias and allows subsequent analysis of the filter sample for determination of other classes of contaminants. MPs ranged from 0.0032 to 1.18 particle per m3 of seawater, with a mean value of 0.17 ± 0.34 particle m−3, showing concentrations lower than those found in the oceans worldwide. MPs included fragments (mean 71.9 ± 21.6%), fibers (mean 12.7 ± 14.3%), and others (mean 15.4 ± 12.8%). The presence of different types of MPs was confirmed by FTIR spectroscopy, with predominant abundance of polyethylene and polypropylene. The potential environmental impact arising from scientific activities, such as marine activities for scientific purposes, and from the sewage treatment plant, was also evidenced.

Last update from database: 12/1/25, 3:10 AM (UTC)