Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 5 resources
-
We compare the present and last interglacial periods as recorded in Antarctic water stable isotope records now available at various temporal resolutions from six East Antarctic ice cores: Vostok, Taylor Dome, EPICA Dome C (EDC), EPICA Dronning Maud Land (EDML), Dome Fuji and the recent TALDICE ice core from Talos Dome. We first review the different modern site characteristics in terms of ice flow, meteorological conditions, precipitation intermittency and moisture origin, as depicted by meteorological data, atmospheric reanalyses and Lagrangian moisture source diagnostics. These different factors can indeed alter the relationships between temperature and water stable isotopes. Using five records with sufficient resolution on the EDC3 age scale, common features are quantified through principal component analyses. Consistent with instrumental records and atmospheric model results, the ice core data depict rather coherent and homogenous patterns in East Antarctica during the last two interglacials. Across the East Antarctic plateau, regional differences, with respect to the common East Antarctic signal, appear to have similar patterns during the current and last interglacials. We identify two abrupt shifts in isotopic records during the glacial inception at TALDICE and EDML, likely caused by regional sea ice expansion. These regional differences are discussed in terms of moisture origin and in terms of past changes in local elevation histories, which are compared to ice sheet model results. Our results suggest that elevation changes may contribute significantly to inter-site differences. These elevation changes may be underestimated by current ice sheet models.
-
We report the first ground-based passive microwave observations made from Troll station, Antarctica, which show enhanced mesospheric nitric oxide (NO) volume mixing ratio reaching levels of 1.2 ppmv, or 2–3 orders of magnitude above background, at 70–80 km during small, relatively isolated geomagnetic storms in 2008. The mesospheric NO peaked 2 days after enhanced NO at higher altitudes (110–150 km) measured by the SABER satellite, and 2 days after peaks in the >30 keV and >300 keV electron flux measured by POES, although the 300 keV electron flux remained high. High time resolution data shows that mesospheric NO was enhanced at night and decayed during the day and built up to high levels over a period of 3–4 days. The altitude profile of mesospheric NO suggests direct production by ∼300 keV electron precipitation. Simulations using the Sodankylä Ion and Neutral Chemistry model show that the delay between thermospheric and mesospheric NO enhancements was primarily a result of the weaker production rate at lower altitudes by ∼300 keV electrons competing against strong day-time losses.
-
We use observations of N2O and mean age to identify realistic transport in models in order to explain their ozone predictions. The results are applied to 15 chemistry climate models (CCMs) participating in the 2010 World Meteorological Organization ozone assessment. Comparison of the observed and simulated N2O, mean age and their compact correlation identifies models with fast or slow circulations and reveals details of model ascent and tropical isolation. This process-oriented diagnostic is more useful than mean age alone because it identifies models with compensating transport deficiencies that produce fortuitous agreement with mean age. The diagnosed model transport behavior is related to a model's ability to produce realistic lower stratosphere (LS) O3 profiles. Models with the greatest tropical transport problems compare poorly with O3 observations. Models with the most realistic LS transport agree more closely with LS observations and each other. We incorporate the results of the chemistry evaluations in the Stratospheric Processes and their Role in Climate (SPARC) CCMVal Report to explain the range of CCM predictions for the return-to-1980 dates for global (60°S–60°N) and Antarctic column ozone. Antarctic O3 return dates are generally correlated with vortex Cly levels, and vortex Cly is generally correlated with the model's circulation, although model Cl chemistry and conservation problems also have a significant effect on return date. In both regions, models with good LS transport and chemistry produce a smaller range of predictions for the return-to-1980 ozone values. This study suggests that the current range of predicted return dates is unnecessarily broad due to identifiable model deficiencies.
-
The horizontal wind data from the standard version of Canadian Middle Atmosphere Model Data Assimilation System (CMAM-DAS) for the years 2006–2008 are analyzed to obtain the global structure and seasonal variability of the semidiurnal tide (SDT) in the mesosphere. The modeled amplitudes and phases of the SDTs at single stations from middle/high northern latitudes are quite similar to those observed by radars. The primary nonmigrating tides identified in both the meridional wind and zonal wind semidiurnal spectra at 88 km include the westward propagating wave numbers s = 1 (SW1), 3 (SW3), 4 (SW4), 6 (SW6), the standing s = 0 (S0), and the eastward propagating s = 2 (SE2). The migrating SDT (SW2) amplitude maxima usually occur at 40°N–60°N during December–February and August–September, and also at 40°S–60°S in April–May, with the dominance of (2, 4) during October–April and (2, 3) and (2, 5) dominance for other months. The CMAM-DAS is quite successful in reproducing the dominance of SW1 in the Antarctic summer mesosphere. The modeled SW1 shows very good overall agreement in both amplitude and phase with wind measurements from UARS High Resolution Doppler Imager and Wind Imaging Interferometer (UARS-HRDI/WINDII) and from TIMED Doppler Interferometer (TIDI). The CMAM-DAS analyses for SW3, SW4, SW6, and S0 are also in reasonable agreement with those determined from the HRDI/WINDII or TIDI wind measurements. This work provides further evidence for the tidal forcing from below.
-
The latent heat fluxes (LHF) and sensible heat fluxes (SHF) over the Southern Ocean from six different data sets are inter-compared for the period 1988- 2000. The six data sets include three satellite-based products, namely, the second version of the Goddard Satellite-Based Surface Turbulent Fluxes data set (GSSTF-2), the third version of the Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data (HOAPS-3) and the Japanese Ocean Fluxes Data Sets with Use of Remote Sensing Observations (J-OFURO); two global reanalysis products, namely, the National Centers for Environmental Prediction-Department of Energy Reanalysis 2 data set (NCEP-2) and the European Centre for Medium-Range Weather Forecasts 40 Year Re-analysis data set (ERA-40); and the Objectively Analyzed Air-Sea Fluxes for the Global Oceans data set (OAFlux). All these products reveal a similar pattern in the averaged flux fields. The zonal mean LHF fields all exhibit a continuous increase equatorward. With an exception of HOAPS-3, the zonal mean SHF fields display a minimum value near 50°S, increasing both pole- and equatorward. The differences in the standard deviation for LHF are larger among the six data products than the differences for SHF. Over the regions where the surface fluxes are significantly influenced by the Antarctic Oscillation and the Pacific-South American teleconnection, the values and distributions of both LHF and SHF are consistent among the six products. It was found that the spatial patterns of the standard deviations and trends of LHF and SHF can be explained primarily by sea-air specific humidity and temperature differences; wind speed plays a minor role. Keywords: Latent heat flux; sensible heat flux; Southern Ocean.
Explore
Topic
- meteorologi
- Antarktis (3)
- atmosfæren (2)
- atmosfærisk tidevann (1)
- drivhusgasser (1)
- Dronning Maud Land (2)
- fysikk (1)
- geofysikk (2)
- geomagnetiske stormer (1)
- geovitenskap (1)
- glasiologi (1)
- iskjerner (1)
- klimamodeller (1)
- klimatologi (2)
- observasjoner (2)
- ozonlaget (1)
- radiometer (1)
- Sørishavet (2)
- stabile isotoper (1)
- stratosfæren (1)
- Troll forskningsstasjon (1)
Resource type
- Journal Article (5)
Publication year
Online resource
- yes (5)