Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Your search

Results 4 resources

  • The atmospheric observatory at the Norwegian Research Station Troll in Queen Maud Land, Antarctica, holds, since February 2007, the first all-year Antarctic atmospheric aerosol particle number size distribution measurements. These are colocated with measurements of the aerosol absorption and spectral scattering coefficients. In June 2007, this instrument set observed an aerosol whose properties were indicative of a biomass burning aerosol. These properties included two log-normal size distribution modes with median particle diameters of 0.105 μm and 0.36 μm, sharply falling off to smaller and larger sizes, and peaks in scattering and absorption coefficient. With backward plume calculations of the Lagrangian transport model FLEXPART and the MODIS fire activity product, a source-receptor relationship was established between biomass burning events in Central Brazil and the aerosol seen at Troll. This is the first direct evidence that the Antarctic continent is susceptible to emissions from as far north as Southern tropical latitudes.

  • The Troll Atmospheric Station in Antarctica (72°01'S, 2°32'E, 1309 m a.s.l.) was established and put into operation in early 2007. The main foci of the measurement programme are pollution and aerosols in the transition zone between the coastal zone and the inland ice plateau, complementing existing observation programmes along the Antarctic coast and on the Antarctic Plateau. After one year of operation, the monitoring programme is fully operative, and a comprehensive set of data is being analysed. As far as comparable data are available, there is satisfactory agreement between previous and new data. Both aerosol data and measurements of pollution indicate the episodic influence of coastal air masses throughout the year. Background values of medium long-lived pollutants such as CO, O3 and Hg are up to 50% lower than at corresponding Arctic sites (depending on the season), but are still significant. Total ozone and UV doses manifest the recurring Antarctic stratospheric ozone hole, which was moderately severe, but very persistent in 2007. Specific episodes of elevated aerosol concentration and mercury activation are currently under detailed investigation, and will be published separately.

  • Observations of snow properties, superimposed ice, and atmospheric heat fluxes have been performed on first-year and second-year sea ice in the western Weddell Sea, Antarctica. Snow in this region is particular as it does usually survive summer ablation. Measurements were performed during Ice Station Polarstern (ISPOL), a 5-week drift station of the German icebreaker RV Polarstern. Net heat flux to the snowpack was 8 W m−2, causing only 0.1 to 0.2 m of thinning of both snow cover types, thinner first-year and thicker second-year snow. Snow thinning was dominated by compaction and evaporation, whereas melt was of minor importance and occurred only internally at or close to the surface. Characteristic differences between snow on first-year and second-year ice were found in snow thickness, temperature, and stratigraphy. Snow on second-year ice was thicker, colder, denser, and more layered than on first-year ice. Metamorphism and ablation, and thus mass balance, were similar between both regimes, because they depend more on surface heat fluxes and less on underground properties. Ice freeboard was mostly negative, but flooding occurred mainly on first-year ice. Snow and ice interface temperature did not reach the melting point during the observation period. Nevertheless, formation of discontinuous superimposed ice was observed. Color tracer experiments suggest considerable meltwater percolation within the snow, despite below-melting temperatures of lower layers. Strong meridional gradients of snow and sea-ice properties were found in this region. They suggest similar gradients in atmospheric and oceanographic conditions and implicate their importance for melt processes and the location of the summer ice edge.

  • The seasonality of moisture sources for precipitation in Antarctica is studied with a Lagrangian moisture source diagnostic. Moisture origin for precipitation in Antarctica has strongly asymmetric properties, which are related to the Antarctic topography, seasonal sea ice coverage, and the land/ocean contrasts in the mid-latitudes of the southern hemisphere. The highest altitudes of the East Antarctic ice shield, where major ice cores have been drilled, have mean source latitudes of 45–40°S year-round. This finding contrasts to results from previous Lagrangian studies which detected a more southerly moisture origin due to too short trajectories. Now, results from Lagrangian moisture source diagnostics are consistent with findings from general circulation models with tagged tracers. Thus, both approaches can serve as a common benchmark for the interpretation of moisture source indicators based on stable isotopes, such as deuterium excess, in Antarctic ice cores.

Last update from database: 3/1/25, 3:17 AM (UTC)