Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Your search

Results 4 resources

  • ABSTRACT Understanding diet composition is essential for unravelling trophic interactions in aquatic ecosystems. DNA metabarcoding, utilising various variable regions of the 18S rRNA gene, is increasingly employed to investigate zooplankton diet composition. However, accurate results depend on rapid inactivation of digestive enzymes and DNA nucleases through proper sample processing and preservation. In this study, we compare the prey communities of Antarctic krill retrieved from the 18S variable regions V4 and V7 and assess how different processing treatments affect the detected prey composition of both krill and salps. Our findings highlight the critical importance of prompt sample processing for species with highly efficient digestive enzymes, such as krill, to preserve rapidly digested prey, including gelatinous plankton. Comparative analyses of the V4 and V7 regions revealed significantly different prey communities within the same krill samples, indicating that these regions may not be suitable for direct comparisons within or across studies. To complement molecular approaches, we also analyse fatty acids (FA) as trophic markers which provide insights into dietary habits over both short and long time scales. By comparing FA signals from stomach and tissue samples of the same krill and salp individuals, we identified significant differences in trophic markers representing different plankton groups. These findings emphasise the necessity of separating digestive tract from tissue to distinguish between short- and long-term diet signals. Furthermore, integrating FA analysis with metabarcoding offers valuable insights into zooplankton digestion efficiency across taxonomic levels. This combined approach enhances our understanding of zooplankton feeding ecology and trophic interactions in marine ecosystems.

  • Understanding how marine predators structure and adjust their foraging in response to prey field characteristics is a longstanding objective in marine ecology. This is particularly challenging in Southern Ocean ecosystems, where logistical and financial constraints hinder assessment of predator foraging and prey field information at relevant spatial and temporal scales. Here, we examine how Adélie penguins, Pygoscelis adeliae, a key Southern Ocean indicator species, perform and organize their foraging behaviour during two contrasting years of krill (Euphausia superba) abundance. Using multiyear krill acoustic data from King George Island in the West Antarctic Peninsula (WAP), we assess broad seasonal conditions in krill availability. We also analyse a suite of penguin biologging data (spatial location, dive and accelerometry-derived activities) during the same period to identify broad behavioural differences in their bout-diving activity, a classical measure of the temporal organization of foraging in diving predators. During years of high krill abundance and availability, penguins performed shorter dive bouts (consisting of shallower and shorter-duration dives), which were more concentrated in time and space. Despite these differences in bout structure, prey capture attempts occurred at the same rate within bouts. These findings challenge traditional interpretations assuming that increased bout durations (and related proxies of prey capture effort) signal increased krill patch abundance and profitability. Although additional data are required to understand the full scope of penguin bout diving and krill prey field associations, our work improves understanding of penguin behavioural variation and provides insights into how foraging behaviours could potentially be used to interpret krill availability at predator- and management-relevant scales.

  • Understanding the connection between maturity stages and morphology in relation to size selectivity in trawls is essential for assessing the impact of various fishing gear on the population structures of harvested species, their fishing mortality rates, and the efficiency of the gear used. The Antarctic krill (Euphausia superba) fishery is the largest in the Southern Ocean by volume, and there is increasing interest in expanding the industry. The krill fishery employs different trawl designs and is not currently subject to technical regulations specifying the types of fishing gear and mesh sizes that can legally be used. There is a need to establish a robust model predicting size selectivity that includes the morphological variation in the population of krill. Male and female Antarctic krill are described with 12 maturity stages, from juveniles to sexually mature adults, each with distinct morphological features. The current study established a morphological description of each individual krill maturity stage to identify and parameterize what determines size selectivity using the FISHSELECT framework. This framework is used to predict size selectivity for each of the different stages in various mesh sizes and openings relevant to the krill fishery, in both actual and virtual populations. The results can be used to assess size selectivity for specific fishing gears and population structures, facilitating more accurate understanding and modeling of the fishery’s impact on the demographic composition of the krill stock.

  • Seabirds can disperse widely when searching for prey, particularly during nonbreeding periods. Conservation measures predominately focus on protecting breeding colonies, while spatial protection at sea is often based on knowledge of the distribution of breeding adults, despite accumulating evidence that marine habitats used by immature birds sometimes differ from those of adults. Juvenile emperor penguins from Atka Bay, west Dronning Maud Land, Antarctica, tracked immediately after fledging performed long migrations to the northern extents of the Convention for the Conservation of Antarctic Marine Living Resources subareas 48.4 and 48.6. Individuals did not remain long at their northern positions, before commencing a rapid southerly movement to within a few hundred km of the marginal ice zone (MIZ). The initial migratory movement was broadly synchronous across individuals. The southward movement and subsequent change to area-restricted searching were consistent with the MIZ representing a potentially important feeding habitat for juvenile emperor penguins. Spatio-temporal management mechanisms may be beneficial in reducing threats to these young penguins.

Last update from database: 12/1/25, 3:10 AM (UTC)