Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 7 resources
-
Swarming is a fundamental part of the life of Euphausia superba, yet we still know very little about what drives the considerable variability in swarm shape, size and biomass. We examined swarms across the Scotia Sea in January and February 2003 using a Simrad EK60 (38 and 120kHz) echosounder, concurrent with net sampling. The acoustic data were analysed through applying a swarm-identification algorithm and then filtering out all non-krill targets. The area, length, height, depth, packing-concentration and inter-swarm distance of 4525 swarms was derived by this method. Hierarchical clustering revealed 2 principal swarm types, which differed in both their dimensions and packing-concentrations. Type 1 swarms were generally small (<50m long) and were not very tightly packed (<10ind.m−3), whereas type 2 swarms were an order of magnitude larger and had packing concentrations up to 10 times greater. Further sub-divisions of these types identified small and standard swarms within the type 1 group and large and superswarms within the type 2 group. A minor group (swarm type 3) was also found, containing swarms that were isolated (>100km away from the next swarm). The distribution of swarm types over the survey grid was examined with respect to a number of potential explanatory variables describing both the environment and the internal-state of krill (namely maturity, body length, body condition). Most variables were spatially averaged over scales of ∼100km and so mainly had a mesoscale perspective. The exception was the level of light (photosynthetically active radiation (PAR)) for which measurements were specific to each swarm. A binary logistic model was constructed from four variables found to have significant explanatory power (P<0.05): surface fluorescence, PAR, krill maturity and krill body length. Larger (type 2) swarms were more commonly found during nighttime or when it was overcast during the day, when surface fluorescence was low, and when the krill were small and immature. A strong pattern of diel vertical migration was not observed although the larger and denser swarms tended to occur more often at night than during the day. The vast majority of krill were contained within a minor fraction of the total number of swarms. These krill-rich swarms were more common in areas dominated by small and immature krill. We propose that, at the mesoscale level, the structure of swarms switches from being predominantly large and tightly packed to smaller and more diffuse as krill grow and mature. This pattern is further modulated according to feeding conditions and then level of light.
-
A baseline for persistent organohalogen compound (POC) accumulation in the Antarctic keystone species, Antarctic krill (Euphausia superba) has been established for a 50° longitudinal range of the eastern Antarctic sector. Samples of adult krill, caught from 12 sites distributed between 30° and 80°E (60–70°S), were analysed for >100 organohalogen compounds including chlorinated pesticides, polychlorinated biphenyls (PCBs), polybrominated organic compounds and polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs). Organochlorine pesticides dominated measured krill contaminant burdens with hexachlorobenzene (HCB) as the single most abundant compound quantified. Krill HCB concentrations were comparable to those detected at this trophic level in both the Arctic and temperate northwest Atlantic, lending support for the hypothesis that HCB will approach global equilibrium at a faster rate than other POCs. Para, para′-dichlorodiphenylethene (p,p′-DDE) was detected at notable concentrations. Measurements of DDT and its degradation products provide an important baseline for monitoring the temporal and geographical influence of renewed, DDT usage for malaria-control in affected southern hemisphere countries. In contrast to the Arctic, PCBs did not feature prominently in contaminant burdens of Antarctic krill. The major commercial polybrominated diphenyl ether (PBDE) congeners -99 and -47 were quantified at low background levels with clear concentration spikes observed at around 70°E , in the vicinity of modern, active research stations. The likelihood that local anthropogenic activities are supplementing low PBDE levels, delivered otherwise primarily via long range environmental transport, is discussed. The suspected naturally occurring brominated organic compound, 2,4,6-tribromoanisole (TBA), was a ubiquitous contaminant in all samples whereas the only PCDD/Fs quantifiable were trace levels of octachlorodibenzo-p-dioxin (OCDD) and 1,2,3,4,7,8/1,2,3,4,7,9-hexachlorodibenzofuran (HxCDF). With the aims of; i) Generating a robust and broadly applicable POC auditing platform for the scarcely studied eastern Antarctic sector; ii) Determining the compounds accumulating in Antarctic krill for further toxicity evaluation studies and iii) Establishing a baseline for Antarctic predator exposure to POCs, this study represents one of the most comprehensive reports of POC contamination of the Antarctic food web to date.
-
Macrobenthic soft-bottom molluscs were sampled in 30 stations located in the Bellingshausen Sea at depths ranging from 90 to 3304 m. The samples were collected using a quantitative grab box-corer during the cruises BENTART 03, from 24 January to 3 March 2003, and BENTART 06, from 2 January to 16 February 2006. Molluscs represent 1074 specimens belonging to 62 species of Polyplacophora, Gastropoda, Bivalvia and Scaphopoda. The bivalve Cyamiocardium denticulatum was the most abundant species (448 specimens). The abundance per station varied between 1 and 446 specimens. The Shannon–Wiener diversity index ranged between one specimen and 2.36, the Pielou evenness index ranged between 0.00 and 1 and species richness ranged from 1 to 14 species. Diversity showed great variations at different stations. After multivariate analysis (cluster analysis and nonmetrical multidimensional scaling) based on Bray–Curtis similarities, we were able to separate two principal clusters. The first cluster groups together species from shallower bottoms near Peter I Island and the Antarctic Peninsula, and the second cluster groups together species from deeper bottoms in the Bellingshausen Sea. The combination of environmental variables with the highest correlations with faunistic data was that of depth and coarse sand at the surface.
-
Precautionary management is based on science, and is incompatible with large fluctuations in the management regime. Whaling is managed by the International Whaling Commission, and has seen large fluctuations. It is argued that both the period of intense Antarctic whaling and the current period of protectionism have been unduly prolonged by scientists expanding out of proportion the uncertainty surrounding management issues. In the 1950s, uncertainty concerning fin whale stock status and trend was consistently distorted from one quarter, and in the 1990s a minority in the Scientific Committee blocked consensus over the revised management procedure that had been successfully developed by the Committee. In both cases, the political consequence of expanded uncertainty in the science was lack of action resulting in a continuation of business as usual. Extending a period of heavy exploitation longer than the resource can sustain is mismanagement. Extending a period of extreme protectionism when the resource is known to scientists to sustain valuable exploitation is also mismanagement even from a conservationist point of view. This might, in fact, erode the role of science in management and thus prepare the ground for subsequent overexploitation. Distorting uncertainty by injecting controversy or otherwise expanding uncertainty has contributed to excessive fluctuations in management regimes and consequently in stock abundance. Detrimental fluctuations might continue, since science is side tracked and management now is based on sentiments that might fade.
-
Environmental seasonality is a critical factor in structuring polar marine ecosystems. The extensive data now available on the lipids of Arctic and Antarctic euphausiids show that all species are characterised by a seasonally high lipid content, and neutral lipids, whether wax esters or triacylglycerols, are primarily accumulated for reproduction. The Arctic Thysanoessa inermis and the Antarctic Euphausia crystallorophias contain high levels of wax esters and higher concentrations of 18:4(n-3) and 20:5(n-3) and a lower ratio of 18:1(n-9)/(n-7) fatty acids in their neutral lipids than the Arctic Thysanoessa raschii and the Antarctic Thysanoessa macrura and Euphausia superba. Large amounts of phytol in the lipids of T. raschii and E. crystallorophias during winter suggest the ingestion of decaying algae originating in sedimenting material or in sea ice. Thysanoessa raschii, T. macrura, and E. superba have a high ratio of 18:1(n-9)/ (n-7) fatty acids, indicating animal carnivory. We conclude that T. inermis and E. crystallorophias are true high polar herbivores, while T. raschii, T. macrura, and E. superba are omnivores with a more boreal distribution. The Arctic species Thysanoessa longicaudata and Meganyctiphanes norvegica are carnivores feeding on Calanus, as indicated by high amounts of 20:1(n-9) and 22:1(n-11) fatty acids.
Explore
Topic
- marine økosystemer
- Antarktis (1)
- biodiversitet (1)
- bløtdyr (1)
- copepoder (1)
- Den internasjonale hvalfangstkommisjonen (1)
- ekkolodd (1)
- ekspedisjoner (1)
- euphausiacea (1)
- fiskeri (1)
- forskning (1)
- forurensning (1)
- hvaler (1)
- hvalfangst (2)
- krill (4)
- marin biologi (5)
- menneskelig påvirkning (1)
- miljøgifter (1)
- mollusker (1)
- oseanografi (1)
- Peter I. Øy (1)
- plankton (4)
- raudåte (1)
- Scotiahavet (1)
- Sørishavet (6)
- toksikologi (1)
Resource type
- Book (1)
- Book Section (1)
- Journal Article (5)