Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 6 resources
-
The fugacity of carbon dioxide (fCO2) of the surface waters of the Weddell Sea along the prime meridian has been described for the austral autumn in 1996 and 1998. For individual years, fCO2 has a strong linear relationship with sea surface temperature, although the relationships cannot be reconciled to provide an interannually consistent algorithm for remotely sensed assessment of fCO2. However, from the assumption that Weddell Sea surface water has a single end member (upwelled Warm Deep Water) we have determined the relative contributions of heating, ice-melt, and biological activity on fCO2. A breakdown of the controls shows that the measured annual fCO2 distributions can be recreated for both transects by adjusting solely for thermodynamic forcing, and model adjustments for salinity are small except in regions of significant upwelling during 1998. The incorporation of nitrate utilisation into the model results in a general and significant underestimation of fCO2. This runs contrary to the earlier findings of Sabine and Key (Mar. Chem. 60 (1998) 95) in the Southern Ocean although it is consistent with models in the area (Louanchi et al., Deep-Sea Res. I 48 (2001) 1581). A major caveat to these findings is the significant departure of the thermodynamic model and a tightening of the nitrate-adjusted model in 1998 in areas with deeper mixing in the southern Weddell Sea. We propose that there are two reasons for the discrepancies in our model: the source waters are not as homogenous as the model assumes; and there are geographical and seasonal variations of CO2 exchange with the atmosphere and the input of inorganic carbon and nitrate from below the mixed layer resulting in imbalances in the mixed layer concentration ratios.
-
Fifty-seven Antarctic marine bacteria were examined for their ability to degrade commercial diesel oil as the sole organic substrate at both 4 °C and 20 °C. Based on the preliminary screening, two isolates (B11 and B15) with high capacity to degrade diesel oil were selected and their biodegradation effi ciency was quantifi ed by gas chromatographic analysis. As expected for psychrotrophs, diesel oil biodegradation was slower at 4 °C than at 20 °C. The two strains also mineralized the C28 n-paraffi n octacosane at 20 °C and polychlorinated biphenyls (PCBs) at 4 °C and 20 °C.
-
Two strains of psychrotolerant Antarctic marine bacteria were isolated and characterized using biochemical and molecular techniques. Sequencing of 16S rRNA gene showed that UVvi strain belongs to the genus Arthrobacter whereas UVps strain is related to the Flexibacter-Cytophaga-Bacteroides (FCB) group. Response of the strains to solar radiation was studied during the summer of 1999 in Potter Cove, near Jubany station (South Shetland Island, Antarctica). The effect of photosynthetically available radiation (PAR, 400-700 nm), ultraviolet-A (UV-A, 320-400 nm) and ultraviolet-B radiation (UV-B, 280-320 nm) on cell viability was studied using mixed cultures in quartz bottles covered with interferential filters and exposed to solar radiation. In all experiments, four treatments were used: dark (with light screened out), PAR (with UV radiation screened out), PAR+UV-A (UV-B screened out) and PAR+UV-A+UV-B. Under the assayed conditions, PAR+UV-A and PAR+UV-A+UV-B radiation showed similar negative effects on the viability of the studied strains. However, at the end of the exposure time, mortality values in PAR+UV-A+UV-B treatments were higher than those observed under PAR+UV-A treatments. In both PAR+UV-A and PAR+UV-A+UV-B treatments we observed high levels of hydrogen peroxide compared with the dark control. The Arthrobacter UVvi strain showed significant recovery in dark conditions after exposure to the PAR+UV-A but not after the PAR+UV-A+UV-B treatment. This strain proved to be more resistant to UV radiation than the FCB group-related UVps strain. The results showed that UV radiation has a deleterious effect on these Antarctic marine bacteria and also revealed that the analysed components of the Antarctic bacterioplankton may have different responses when they are exposed to the same irradiance conditions.
-
Iron(III) photoreduction and the responses of phytoplankton under ultraviolet (UV) and photosynthetically available radiation (PAR) were investigated with the presence of hydroxycarboxylic acid (glucaric acid (GA), a model compound for organic acids excreted by phytoplankton). The incubation experiments were carried out on board using seawater samples collected in the location of the winter ice edge (WIE) and the spring ice edge (SIE) of the Southern Ocean. In this paper, we focus on the results of experiment in WIE. Throughout the experiments, dissolved Fe(II), major nutrients and in vivo fluorescence were monitored regularly. In addition, Chl-a, POC/PON, cell densities of phytoplankton and bacteria, bacterial production, organic peroxide, hydrogen peroxide and total CO2 were measured. The results from the WIE show that iron enrichment had a substantial effect on phytoplankton growth rate. Fe(III) addition in the presence of GA (FeGA) gave higher Fe(II) concentration and higher growth rate of phytoplankton than those in controls. Our results suggest that hydroxycarboxylic acid had a significant chemical and biological impact. The presence of GA influenced iron photochemistry and iron availability to phytoplankton. Phytoplankton growth responses to iron enrichments in incubations under UV and PAR were completely dissimilar. It seems that FeGA addition prominently changes the harmful effect of UV on the phytoplankton population. This study provides preliminary information on how the photoreduction of iron(III) and the phytoplankton growth are affected by iron enrichment in the presence of hydroxycarboxylic acid.
-
The importance of the diatom Fragilariopsis cylindrus (Grunow) Krieger in Helmcke & Krieger in the Arctic and Antarctic is well known. It is used as an indicator of sea ice when the paleoenvironment is being described. It is often among the dominant taxa in different sea ice communities, sometimes making an important contribution to a subsequent phytoplankton growth when released by ice melt. However, it may also dominate phytoplankton blooms in areas never experiencing sea ice. The use of F. cylindrus as an indicator for reconstruction of palaeoceanographic conditions is assessed from literature records. Its potential as an indicator species for sea ice appears to vary from region to region, but it is a good indicator of cold water.
-
The role of iron and light in controlling photosynthate production and allocation in phytoplankton populations of the Atlantic sector of the Southern Ocean was investigated in April–May 1999. The 14C incorporation into five biochemical pools (glucan, amino acids, proteins, lipids and polysaccharides) was measured during iron/light perturbation experiments. The diurnal Chl a-specific rates of carbon incorporation into these pools did not change in response to iron addition, yet were decreased at 20 μmol photons m−2 s−1, an irradiance comparable with the one at 20–45 m in situ depth. This suggests that the low phytoplankton biomass encountered (0.1–0.6 μg Chl a L−1) was mainly caused by light limitation in the deep wind mixed layer (>40 m). Regional differences in Chl a-specific carbon incorporation rates were not found in spite of differences in phytoplankton species composition: at the Antarctic Polar Front, biomass was dominated by a diatom population of Fragilariopsis kerguelensis, whereas smaller cells, including chrysophytes, were relatively more abundant in the Antarctic Circumpolar Current beyond the influence of frontal systems. Because mixing was often in excess of 100 m in the latter region, diatom cells may have been unable to fulfil their characteristically high Fe demand at low average light conditions, and thus became co-limited by both resources. Using a model that describes the 14C incorporation, the consistency was shown between the dynamics in the glucan pool in the field experiments and in laboratory experiments with an Antarctic diatom, Chaetoceros brevis. The glucan respiration rate was almost twice as high during the dark phase as during the light phase, which is consistent with the role of glucan as a reserve supplying energy and carbon skeletons for continued protein synthesis during the night.
Explore
Topic
- marin biologi
- bakterier (2)
- biokjemi (3)
- biologisk nedbrytning (1)
- diatomeer (1)
- fotosyntese (2)
- fytoplankton (1)
- karbon syklus (1)
- karbondioksid (1)
- kjemi (1)
- marin kjemi (1)
- marin økologi (1)
- oseanografi (3)
- ozonlaget (1)
- paleoseanografi (1)
- phytoplankton (2)
- plankton (1)
- planteplankton (1)
- polarområdene (1)
- Rosshavet (1)
- Sørishavet (6)
- ultrafiolett stråling (1)
- UV-stråling (1)
- Weddellhavet (1)
Resource type
- Journal Article (6)
Publication year
Online resource
- yes (6)