Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 4 resources
-
Understanding how marine predators structure and adjust their foraging in response to prey field characteristics is a longstanding objective in marine ecology. This is particularly challenging in Southern Ocean ecosystems, where logistical and financial constraints hinder assessment of predator foraging and prey field information at relevant spatial and temporal scales. Here, we examine how Adélie penguins, Pygoscelis adeliae, a key Southern Ocean indicator species, perform and organize their foraging behaviour during two contrasting years of krill (Euphausia superba) abundance. Using multiyear krill acoustic data from King George Island in the West Antarctic Peninsula (WAP), we assess broad seasonal conditions in krill availability. We also analyse a suite of penguin biologging data (spatial location, dive and accelerometry-derived activities) during the same period to identify broad behavioural differences in their bout-diving activity, a classical measure of the temporal organization of foraging in diving predators. During years of high krill abundance and availability, penguins performed shorter dive bouts (consisting of shallower and shorter-duration dives), which were more concentrated in time and space. Despite these differences in bout structure, prey capture attempts occurred at the same rate within bouts. These findings challenge traditional interpretations assuming that increased bout durations (and related proxies of prey capture effort) signal increased krill patch abundance and profitability. Although additional data are required to understand the full scope of penguin bout diving and krill prey field associations, our work improves understanding of penguin behavioural variation and provides insights into how foraging behaviours could potentially be used to interpret krill availability at predator- and management-relevant scales.
-
Understanding population connectivity in the marine realm is crucial for conserving biodiversity, managing fisheries, and predicting species responses to environmental change. This is particularly important in Antarctic waters, where unique evolutionary histories and extreme conditions shape marine biodiversity. The longfin icedevil Aethotaxis mitopteryx is an elusive notothenioid fish endemic to Antarctic waters. To explore population connectivity in A. mitopteryx, we used RAD-seq to investigate the genetic differentiation of two populations, one from the Eastern Weddell Sea and the other from the Eastern Antarctic Peninsula, two regions of ecological relevance greatly impacted by climate change. Despite spatial separation, analyses revealed no significant genetic differentiation between the two populations, suggesting extensive gene flow. A pronounced genetic distinction was, however, observed between males and females. This differentiation was largely localized to a specific chromosome, implying a genetic sex determination system with males being the heterogametic sex. These findings contribute novel insights into the genetic structure of A. mitopteryx populations and expand our understanding of genetic mechanisms in Antarctic fish. This study provides a foundation for further investigations into the evolutionary and ecological implications of sex chromosome differentiation in extreme environments.
-
Understanding population connectivity in the marine realm is crucial for conserving biodiversity, managing fisheries, and predicting species responses to environmental change. This is particularly important in Antarctic waters, where unique evolutionary histories and extreme conditions shape marine biodiversity. The longfin icedevil Aethotaxis mitopteryx is an elusive notothenioid fish endemic to Antarctic waters. To explore population connectivity in A. mitopteryx, we used RAD-seq to investigate the genetic differentiation of two populations, one from the Eastern Weddell Sea and the other from the Eastern Antarctic Peninsula, two regions of ecological relevance greatly impacted by climate change. Despite spatial separation, analyses revealed no significant genetic differentiation between the two populations, suggesting extensive gene flow. A pronounced genetic distinction was, however, observed between males and females. This differentiation was largely localized to a specific chromosome, implying a genetic sex determination system with males being the heterogametic sex. These findings contribute novel insights into the genetic structure of A. mitopteryx populations and expand our understanding of genetic mechanisms in Antarctic fish. This study provides a foundation for further investigations into the evolutionary and ecological implications of sex chromosome differentiation in extreme environments.
-
Antarctic krill meal (KM) (Euphausia superba) as a substitute for fishmeal in aquatic animal diets is gaining popularity worldwide. A quantitative approach investigating the efficacy of using this protein on the production performance of aquatic animals remains widely limited. Here, we employed a meta-analysis to quantify the overall effects (Hedges’g [g] value effect size) of KM on the specific growth rate (SGR), feed conversion ratio (FCR), protein efficiency ratio (PER), and survival rate (SR) of several aquaculture species. A total of 22 records published during 2006 to 2022 from different countries, targeting 14 aquatic species, were employed in the present study. Overall, KM has a high nutritional value relative to fishmeal, particularly from the high protein and amino acid composition. Dietary KM significantly increased the overall effect size of SGR (g = 1.92) (P = 0.001); the positive effect was illustrated in marine species (g = 1.32 to 9.10) (P < 0.05) and sturgeon (Acipenser gueldenstaedtii) (g = 6.59) (P < 0.001). The overall g value for FCR (−2.42) was significantly improved compared to the control group (P < 0.001). The inclusion of KM in aquatic animal diets did not affect g value of PER (1.52, 95% confidence interval: −1.04 to 4.07) and survival rate (0.08, 95% confidence interval: −0.63 to 0.79) (P = 0.252 and 0.208, respectively). The meta-regression models indicated that SGR of rainbow trout (Oncorhynchus mykiss) was significantly correlated with dietary KM by a positive linear model (P = 0.022). The cod and sturgeon (A. gueldenstaedtii) appeared to efficiently utilize krill-containing diets as illustrated by a negative linear model (P = 0.011 and P = 0.024, respectively) between dietary KM and FCR. Dietary KM positively correlated with PER for Atlantic cod (P = 0.021). Our meta-analysis highlighted the significant outcome of KM in diets for aquaculture species by reducing pressure on forage fish from marine resources and sparing edible foods. Specifically, including KM significantly reduced economic fish-in fish-out (eFIFO) in four taxa—the top forage fish consumers (P < 0.05): marine fish, salmon, shrimp, and trout. The meta-analysis revealed the decreased food-competition feedstuff in diets for important aquaculture species (P < 0.05) fed dietary KM. The outlook for efficient use of KM from marine resources in aquafeeds was elucidated in the present work.
Explore
Topic
- marin økologi
- akvakultur (1)
- biodiversitet (2)
- ekkolodd (1)
- fiskerier (3)
- genetikk (2)
- klimaendringer (1)
- krill (2)
- marin biologi (4)
- marine økosystemer (1)
- matauk (1)
- pingviner (1)
- plankton (2)
- Sørishavet (4)
- Weddellhavet (2)
Resource type
- Journal Article (4)
Publication year
Online resource
- yes (4)