Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 5 resources
-
Ice shelves around Antarctica are vulnerable to an increase in ocean-driven melting, with the melt rate depending on ocean temperature and the strength of flow inside the ice-shelf cavities. We present measurements of velocity, temperature, salinity, turbulent kinetic energy dissipation rate, and thermal variance dissipation rate beneath Pine Island Glacier ice shelf, West Antarctica. These measurements were obtained by CTD, ADCP, and turbulence sensors mounted on an Autonomous Underwater Vehicle (AUV). The highest turbulent kinetic energy dissipation rate is found near the grounding line. The thermal variance dissipation rate increases closer to the ice-shelf base, with a maximum value found ∼0.5 m away from the ice. The measurements of turbulent kinetic energy dissipation rate near the ice are used to estimate basal melting of the ice shelf. The dissipation-rate-based melt rate estimates is sensitive to the stability correction parameter in the linear approximation of universal function of the Monin-Obukhov similarity theory for stratified boundary layers. We argue that our estimates of basal melting from dissipation rates are within a range of previous estimates of basal melting.
-
The main aim of this paper is to explore the potential of combining measurements from fixed- and rotary-wing remotely piloted aircraft systems (RPAS) to complement data sets from radio soundings as well as ship and sea-ice-based instrumentation for atmospheric boundary layer (ABL) profiling. This study represents a proof-of-concept of RPAS observations in the Antarctic sea-ice zone. We present first results from the RV Polarstern Antarctic winter expedition in the Weddell Sea in June–August 2013, during which three RPAS were operated to measure temperature, humidity and wind; a fixed-wing small unmanned meteorological observer (SUMO), a fixed-wing meteorological mini-aerial vehicle, and an advanced mission and operation research quadcopter. A total of 86 RPAS flights showed a strongly varying ABL structure ranging from slightly unstable temperature stratification near the surface to conditions with strong surface-based temperature inversions. The RPAS observations supplement the regular upper air soundings and standard meteorological measurements made during the campaign. The SUMO and quadcopter temperature profiles agree very well and, excluding cases with strong temperature inversions, 70% of the variance in the difference between the SUMO and quadcopter temperature profiles can be explained by natural, temporal, temperature fluctuations. Strong temperature inversions cause the largest differences, which are induced by SUMO’s high climb rates and slow sensor response. Under such conditions, the quadcopter, with its slower climb rate and faster sensor, is very useful in obtaining accurate temperature profiles in the lowest 100 m above the sea ice. Keywords: Remotely piloted aircraft systems; unmanned aerial vehicles; Weddell Sea; polar meteorology; Antarctic; boundary layer meteorology.
-
We report in situ atmospheric measurements of hydrofluorocarbon HFC-43-10mee (C5H2F10; 1,1,1,2,2,3,4,5,5,5-decafluoropentane) from seven observatories at various latitudes, together with measurements of archived air samples and recent Antarctic flask air samples. The global mean tropospheric abundance was 0.21 ± 0.05 ppt (parts per trillion, dry air mole fraction) in 2012, rising from 0.04 ± 0.03 ppt in 2000. We combine the measurements with a model and an inverse method to estimate rising global emissions—from 0.43 ± 0.34 Gg yr−1 in 2000 to 1.13 ± 0.31 Gg yr−1 in 2012 (~1.9 Tg CO2-eq yr−1 based on a 100 year global warming potential of 1660). HFC-43-10mee—a cleaning solvent used in the electronics industry—is currently a minor contributor to global radiative forcing relative to total HFCs; however, our calculated emissions highlight a significant difference from the available reported figures and projected estimates.
-
Monitoring ice-sheet snowmelt is fundamental to understanding global climate change. A simple and automated snowmelt detection process is critical to the establishment of an ice-sheet snowmelt monitoring system. However, different ice-sheet snowmelt detection methods are based on a variety of thresholding schemes using different melt signals for dry and wet snow; these complicate the regular operation of an ice-sheet snowmelt monitoring. We propose an automated melt signal detection method developed using melt signals derived from the cross-gradient polarization ratio snowmelt detection method over Greenland and the wavelet transformation-based snowmelt detection method over Antarctica. Initial results indicate that the proposed method not only increases computational efficiency, practicability and operability but is also more accurate. Keywords: Ice sheet; snowmelt detection; radiometer; cross-gradient polarization ratio; wavelet transformation; generalized Gaussian model.
-
We report on ground-based atmospheric measurements and emission estimates of the four anthropogenic hydrofluorocarbons (HFCs) HFC-365mfc (CH3CF2CH2CF3, 1,1,1,3,3-pentafluorobutane), HFC-245fa (CHF2CH2CF3, 1,1,1,3,3-pentafluoropropane), HFC-227ea (CF3CHFCF3, 1,1,1,2,3,3,3-heptafluoropropane), and HFC-236fa (CF3CH2CF3, 1,1,1,3,3,3-hexafluoropropane). In situ measurements are from the global monitoring sites of the Advanced Global Atmospheric Gases Experiment (AGAGE), the System for Observations of Halogenated Greenhouse Gases in Europe (SOGE), and Gosan (South Korea). We include the first halocarbon flask sample measurements from the Antarctic research stations King Sejong and Troll. We also present measurements of archived air samples from both hemispheres back to the 1970s. We use a two-dimensional atmospheric transport model to simulate global atmospheric abundances and to estimate global emissions. HFC-365mfc and HFC-245fa first appeared in the atmosphere only ∼1 decade ago; they have grown rapidly to globally averaged dry air mole fractions of 0.53 ppt (in parts per trillion, 10−12) and 1.1 ppt, respectively, by the end of 2010. In contrast, HFC-227ea first appeared in the global atmosphere in the 1980s and has since grown to ∼0.58 ppt. We report the first measurements of HFC-236fa in the atmosphere. This long-lived compound was present in the atmosphere at only 0.074 ppt in 2010. All four substances exhibit yearly growth rates of >8% yr−1 at the end of 2010. We find rapidly increasing emissions for the foam-blowing compounds HFC-365mfc and HFC-245fa starting in ∼2002. After peaking in 2006 (HFC-365mfc: 3.2 kt yr−1, HFC-245fa: 6.5 kt yr−1), emissions began to decline. Our results for these two compounds suggest that recent estimates from long-term projections (to the late 21st century) have strongly overestimated emissions for the early years of the projections (∼2005–2010). Global HFC-227ea and HFC-236fa emissions have grown to average values of 2.4 kt yr−1 and 0.18 kt yr−1 over the 2008–2010 period, respectively.
Explore
Topic
- målinger
- Antarktis (2)
- atmosfæren (2)
- batymetri (1)
- brehylle (1)
- drivhusgasser (1)
- Dronning Maud Land (1)
- fjernstyrte flysystemer (1)
- forurensning (1)
- global oppvarming (1)
- havis (1)
- innlandsis (1)
- isbrem (1)
- isshelf (1)
- klimaendringer (2)
- klimatologi (2)
- massespektrometri (1)
- meteorologi (2)
- mikrobølge (1)
- observasjoner (1)
- oseanografi (1)
- polarområdene (1)
- radiometer (1)
- sjøis (1)
- smeltevann (1)
- snøsmelting (1)
- Sørishavet (2)
- statistisk analyse (1)
- temperatur måling (1)
- ubemannede luftfartøyer (1)
- utslipp (1)
- vannmasser (1)
- Weddellhavet (1)
Resource type
- Journal Article (5)
Publication year
Online resource
- yes (5)