Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Your search

Results 11 resources

  • Enhanced Antarctic ice sheet mass loss yields ocean surface freshening, cooling and sea ice expansion, which result in changes in the atmospheric conditions. Using the Southern Ocean Freshwater Input from Antarctica (SOFIA) multi-model ensemble, we study the atmospheric response to a 100-year idealized freshwater release of 0.1 Sv. All models simulate a surface-intensified tropospheric cooling and lower-stratospheric warming south of 35°S. Tropospheric cooling is attributed to sea ice expansion and the associated albedo enhancement in winter and a colder sea surface in summer. This cooling yields a downward displacement of the tropopause, reduced stratospheric water vapor content and ultimately warming around 200 hPa. An enhanced southward eddy heat flux explains warming at 10?100 hPa during austral winter. Despite a temporally (and spatially) uniform prescribed freshwater flux, a prominent sea ice seasonal cycle and atmosphere dynamics result in a distinct seasonal pattern in the occurrence and magnitude of the temperature responses.

  • In recent years, the Antarctic sea ice has experienced major changes, which are neither well understood nor adequately reproduced by Earth system models. To support model development with an aim to improve Antarctic sea ice and upper-ocean predictions, the impacts of updating the sea ice model and the atmospheric forcing are investigated. In the new MetROMS-UHel-v1.0 (henceforth MetROMS-UHel) ocean–sea ice model, the sea ice component has been updated from CICE5 to CICE6, and the forcing has been updated from ERA-Interim (ERAI) to ERA5 reanalyses. The two versions of MetROMS evaluated in this study use a version of the regional ROMS ocean model including ice shelf cavities. We find that the update of CICE (Community Ice CodE) and ERA reduced the negative bias of the sea ice area in summer. However, the sea ice volume decreases after the CICE update but increases when the atmospheric forcing is updated. As a net result after both updates, the modelled sea ice becomes thinner and more deformed, particularly near the coast. The ROMS ocean model usually yielded a deeper ocean mixed layer compared to observations. Using ERA5, the situation was slightly improved. The update from CICE5 to CICE6 resulted in a fresher coastal ocean due to a smaller salt flux from sea ice to the ocean. In the ice shelf cavities, the modelled melt rates are generally underestimated compared with observations, with the largest underestimation coming from the ice shelves in the too cold Amundsen and Bellingshausen seas as well as from the Australian sector in East Antarctica. These identified sea ice and oceanic changes vary seasonally and regionally. By determining sea ice and oceanic changes after the model and forcing updates and evaluating them against observations, this study informs modellers on improvements and aspects requiring attention with potential model adjustments.

  • Observations of water stable isotopes in Antarctic surface snow, precipitation and water vapor are key for improving our understanding of the atmospheric water cycle and past climate reconstructions from ice cores. In this study, we use isotopic observations in Antarctica to assess the skill of the isotope-enabled atmospheric general circulation model LMDZ6, nudged to ERA5 above the boundary layer (1980?2023 period). The model has no significant bias for time-mean temperature and snow accumulation over the ice sheet. Sensitivity test on parameterized supersaturation strength highlights its opposite effect on precipitation ${\delta }^{18}$O and d-excess. Selecting an intermediate supersaturation strength resulted in a minimal bias for surface snow ${\delta }^{18}$O across the continent, with a reduced but systematic positive bias in surface snow d-excess ( ${\sim} $5?). We then assessed seasonal and diurnal isotope variability with daily precipitation and continuous vapor isotopes at Dumont d?Urville (DDU, coastal station) and Concordia (inland station). On a seasonal scale, LMDZ6iso accurately reproduces the seasonal cycle of precipitation ${\delta }^{18}$O and d-excess at both stations. Moving from statistical evaluation to physical analysis, we use the individual process contributions to boundary-layer water vapor isotopes to identify the main drivers controlling the clear-sky isotopic daily cycles. At Concordia, daily isotope variations are mainly driven by surface sublimation, whereas at DDU they are driven by surface sublimation and advection by the katabatic flow. Our results suggest that to further improve water isotopes in LMDZ6iso, fractionation during surface sublimation should be included and fractionation at condensation for low temperature should be better constrained.

  • Over the last decade, the Southern Ocean has experienced episodes of severe sea ice area decline. Abrupt events of sea ice loss are challenging to predict, in part due to incomplete understanding of processes occurring at the scale of individual ice floes. Here, we use high-resolution altimetry (ICESat-2) to quantify the seasonal life cycle of floes in the perennial sea ice pack of the Weddell Sea. The evolution of the floe chord distribution (FCD) shows an increase in the proportion of smaller floes between November and February, which coincides with the asymmetric melt–freeze cycle of the pack. The freeboard ice thickness distribution (fITD) suggests mirrored seasonality between the western and southern sections of the Weddell Sea ice cover, with an increasing proportion of thicker floes between October and March in the south and the opposite in the west. Throughout the seasonal cycle, there is a positive correlation between the mean chord length of floes and their average freeboard thickness. Composited floe profiles reveal that smaller floes are more vertically round than larger floes and that the mean roundness of floes increases during the melt season. These results show that regional differences in ice concentration and type at larger scales occur in conjunction with different behaviors at the small scale. We therefore suggest that floe-derived metrics obtained from altimetry could provide useful diagnostics for floe-aware models and improve our understanding of sea ice processes across scales.

  • Antarctic sea ice has changed significantly over the past four decades; yet limited understanding of fundamental processes, including its seasonal cycle, hinders our ability to interpret these changes. Here, we examine the processes determining the moment when sea ice locally disappears each spring, defined as the retreat date, using satellite observations over 1994?2020. We find that climatological retreat date is driven by sea ice melt in most of the seasonal ice zone and strongly constrained by the seasonal maximum ice thickness. Ice removal due to drifting ice export predominantly drives retreat only in coastal polynyas. At interannual timescales, retreat date anomalies are also preconditioned by prior maximum ice thickness, which affects melt-driven spring ice loss through the ice-albedo feedback, though this effect appears limited to specific regions. Winds emerge as a primary driver of interannual variability in the retreat date, influencing both drift- and melt-related spring ice removal processes.

  • Snowfall is an important component of the mass balance of ice sheets and glaciers in Antarctica. In coastal Victoria Land (VL), changes to snowfall can impact ice masses, landscapes, and coastal ecosystems. Coastal VL is characterized by strong gradients in snowfall rates between the polar desert of the McMurdo Dry Valleys and the high accumulation in northern VL. Extreme precipitation events significantly contribute to total precipitation, with the largest contribution in the Terra Nova Bay area. We present a comprehensive analysis of snowfall dynamics in this region, using a Lagrangian moisture source diagnostic to study moisture sources and Self-Organizing Maps (SOM) to link these to different synoptic weather types. The moisture for snowfall in VL originates from the Southern Ocean, with more local sources in the Ross Sea embayment in summer when sea ice is reduced. We show a strong division in moisture sources between northern and southern VL, with the north receiving precipitation from moisture sources to the west and southern VL from the east. Precipitation in northern VL results from meridional transport of marine air from lower latitudes, while precipitation in southern VL is related to cyclonic disturbances in the Ross Sea that bring moisture from the east. Extreme precipitation in northern VL occurs during blocking highs that intensify meridional transport. Such intrusions of marine air, sometimes in the form of atmospheric rivers, do not impact the more isolated western Ross Ice Shelf and southern VL further in the Ross Sea embayment.

  • Ice-sheet mass loss is one of the clearest manifestations of climate change, with Antarctica discharging mass into the ocean via melting or through calving. The latter produces icebergs that can modify ocean water properties, often at great distances from source. This affects upper-ocean physics and primary productivity, with implications for atmospheric carbon drawdown. A detailed understanding of iceberg modification of ocean waters has hitherto been hindered by a lack of proximal measurements. Here unique measurements of a giant iceberg from an underwater glider enable quantification of meltwater effects on the physical and biological processes in the upper layers of the Southern Ocean, a region disproportionately important for global heat and carbon sequestration. Iceberg basal melting erodes seasonally produced winter water layer stratification, normally forming a strong potential energy barrier to vertical exchange of surface and deep waters, while freshwater run-off increases and shoals near-surface stratification. Nutrient-rich deeper waters, incorporating meltwater loaded with terrigenous material, are ventilated to below this stratification maxima, providing a potential mechanism for alleviating critical phytoplankton-limiting components. Regional historical hydrographic data demonstrate similar stratification changes during the passage of another large iceberg, suggesting that they may be an important pathway of aseasonal winter water modification.

  • Meltwater ponding along the margins of Antarctica poses a threat to ice shelf stability, increasing the risk of accelerated inland ice mass loss. Understanding the key drivers of supraglacial lake formation is therefore essential for assessing the vulnerability and future stability of Antarctic ice shelves. In this study, we combine high-resolution simulation from the regional climate model Modèle Atmosphérique Régional (MAR) with satellite-derived records of supraglacial lakes in coastal Dronning Maud Land to investigate the role of topographic downslope winds on spatial lake distribution. We find that persistent katabatic winds and episodic foehn winds are key controls on the observed regional patterns of lakes. Katabatic winds, most persistent in eastern Dronning Maud Land, exert a sustained impact near grounding zones through snow erosion, scouring and sublimation. Foehn winds predominantly affect ice shelves on the lee (western) side of large ice rises and promontories, causing considerable surface warming. While these downslope winds directly contribute to surface melt and ponding during summer, they also precondition the surface year-round through wind-driven warming and sublimation. Statistical analysis of downslope wind exposure further allows us to identify other Antarctic ice shelves that may become vulnerable to future ponding as firn retention capacity is diminished.

  • The global overturning circulation (GOC) is the largest scale component of the ocean circulation, associated with a global redistribution of key tracers such as heat and carbon. The GOC generates decadal to millennial climate variability, and will determine much of the long-term response to anthropogenic climate perturbations. This review aims at providing an overview of the main controls of the GOC. By controls, we mean processes affecting the overturning structure and variability. We distinguish three main controls: mechanical mixing, convection, and wind pumping. Geography provides an additional control on geological timescales. An important emphasis of this review is to present how the different controls interact with each other to produce an overturning flow, making this review relevant to the study of past, present and future climates as well as to exoplanets’ oceans.

  • Sea ice is a composite solid material that sustains large fracture features at scales from meters to kilometres. These fractures can play an important role in coupled atmosphere-ocean processes. To model these features, brittle sea ice physics, via the Brittle-Bingham-Maxwell (BBM) rheology, has been implemented in the Lagrangian neXt generation Sea Ice Model (neXtSIM). In Arctic-only simulations, the BBM rheology has shown a capacity to represent observationally consistent sea ice fracture patterns and breakup across a wide range of time and length scales. Still, it has not been tested whether this approach is suitable for the modeling of Antarctic sea ice, which is thinner and more seasonal compared to Arctic sea ice, and whether the ability to reproduce sea ice fractures has an impact on simulating Antarctic sea ice properties. Here, we introduce a new 50-km grid-spacing Antarctic configuration of neXtSIM, neXtSIM-Ant, using the BBM rheology. We evaluate this simulation against observations of sea ice extent, drift, and thickness and compare it with identically-forced neXtSIM simulations that use the standard modified Elastic-Visco-Plastic (mEVP) rheology. In general, using BBM results in thicker sea ice and an improved correlation of sea ice drift with observations than mEVP. We suggest that this is related to short-duration breakup events caused by Antarctic storms that are not well-simulated in the viscous-plastic model.

  • Dynamical modeling is widely utilized for Antarctic sea ice prediction. However, the relative impact of initializing different model components remains unclear. We compare three sets of hindcasts of the Norwegian Climate Prediction Model (NorCPM), which are initialized by ocean, ocean/sea-ice, or atmosphere data and referred to as the OCN, OCNICE, and ATM hindcasts hereafter. The seasonal cycle of sea ice extent (SIE) in the ATM reanalysis shows a slightly better agreement with observations than the OCN and OCNICE reanalyzes. The trends of sea ice concentration (SIC) in the OCN and OCNICE reanalyzes compare well to observations, but the ATM reanalysis is poor over the western Antarctic. The OCNICE reanalysis yields the most accurate estimation of sea ice variability, while the OCN and ATM reanalyzes are comparable. Evaluation of the hindcasts reveals the predictive skill varies with region and season. Austral winter SIE of the western Antarctic can be skillfully predicted 12 months ahead, while the predictive skill in the eastern Antarctic is low. Austral winter SIE predictability can be largely attributed to high sea surface temperature predictability, thanks to skillful initialization of ocean heat content. The ATM hindcast from July or October performs best due to the effective initialization of sea-ice thickness, which enhances prediction skills until early austral summer via its long memory. Meanwhile, the stratosphere-troposphere coupling contributes to the prediction of springtime. The comparable skill between the OCN and OCNICE hindcasts implies limited benefits from SIC data on prediction when using ocean data.

Last update from database: 12/1/25, 3:10 AM (UTC)