Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 37 resources
-
Atmospheric CO2 concentrations (pCO2) varied on millennial timescales in phase with Antarctic temperature during the last glacial period. A prevailing view has been that carbon release and uptake by the Southern Ocean dominated this millennial-scale variability in pCO2. Here, using Earth System Model experiments with an improved parameterization of ocean vertical mixing, we find a major role for terrestrial and oceanic carbon releases in driving the pCO2 trend. In our simulations, a change in Northern Hemisphere insolation weakens the Atlantic Meridional Overturning Circulation (AMOC) leading to increasing pCO2 and Antarctic temperatures. The simulated rise in pCO2 is caused in equal parts by increased CO2 outgassing from the global ocean due to a reduced biological activity and changed ventilation rates, and terrestrial carbon release as a response to southward migration of the Intertropical Convergence Zone. The simulated terrestrial release of carbon could explain stadial declines in organic carbon reservoirs observed in recent ice core δ13C measurements. Our results show that parallel variations in Antarctic temperature and pCO2 do not necessitate that the Southern Ocean dominates carbon exchange; instead, changes in carbon flux from the global ocean and land carbon reservoirs can explain the observed pCO2 (and δ13C) changes.
-
The buttressing potential of ice shelves is modulated by changes in subshelf melting, in response to changing ocean conditions. We analyze the temporal variability in subshelf melting using an autonomous phase-sensitive radio-echo sounder near the grounding line of the Roi Baudouin Ice Shelf in East Antarctica. When combined with additional oceanographic evidence of seasonal variations in the stratification and the amplification of diurnal tides around the shelf break topography (Gunnerus Bank), the results suggest an intricate mechanism in which topographic waves control the seasonal melt rate variability near the grounding line. This mechanism has not been considered before and has the potential to enhance local melt rates without advecting different water masses. As topographic waves seem to strengthen in a stratified ocean, the freshening of Antarctic surface water, predicted by observations and models, is likely to increase future basal melting in this area.
-
The boreal spring Antarctic Oscillation (AAO) has a significant impact on the spring and summer climate in China. This study evaluates the capability of the NCEP’s Climate Forecast System, version 2 (CFSv2), in predicting the boreal spring AAO for the period 1983–2015. The results indicate that CFSv2 has poor skill in predicting the spring AAO, failing to predict the zonally symmetric spatial pattern of the AAO, with an insignificant correlation of 0.02 between the predicted and observed AAO Index (AAOI). Considering the interannual increment approach can amplify the prediction signals, we firstly establish a dynamical–statistical model to improve the interannual increment of the AAOI (DY AAOI), with two predictors of CFSv2-forecasted concurrent spring sea surface temperatures and observed preceding autumn sea ice. This dynamical–statistical model demonstrates good capability in predicting DY AAOI, with a significant correlation coefficient of 0.58 between the observation and prediction during 1983–2015 in the two-year-out cross-validation. Then, we obtain an improved AAOI by adding the improved DY AAOI to the preceding observed AAOI. The improved AAOI shows a significant correlation coefficient of 0.45 with the observed AAOI during 1983–2015. Moreover, the unrealistic atmospheric response to March–April–May sea ice in CFSv2 may be the possible cause for the failure of CFSv2 to predict the AAO. This study gives new clues regarding AAO prediction and short-term climate prediction.
-
The Belgica expedition, which left Belgium in August 1897, was the first to spend 13 months continuously in Antarctic waters, before returning in late 1899. This was not only an exploratory venture, as new lands and oceans were charted, but more importantly it was an exceptional and successful scientific voyage. After the return of the expedition, a vast array of scientific data was processed and eventually 92 publications in some nine volumes funded by the Belgica Commission appeared over 40 years as a series called Résultats du voyage de la Belgica en 1897–99 sous le commandement de A. de Gerlache de Gomery – rapports scientifiques. Disappointingly, those significant results have been mostly ignored in the scientific literature and the paper here aims to inform scientists of the achievements of the Belgica expedition and where to obtain the information. Many of the climatological and oceanographic data obtained by the expeditioners ought to be examined in line with the changes that are occurring today in the Antarctic Peninsula region as a result of global warming. Some of the Belgica data form an important database to critically assess environmental changes over 120 years in the region of the Antarctic Peninsula.
-
The Inverse Gaussian approximation of transit time distribution method (IG-TTD) is widely used to infer the anthropogenic carbon (Cant) concentration in the ocean from measurements of transient tracers such as chlorofluorocarbons (CFCs) and sulfur hexafluoride (SF6). Its accuracy relies on the validity of several assumptions, notably (i) a steady state ocean circulation, (ii) a prescribed age tracer saturation history, e.g., a constant 100% saturation, (iii) a prescribed constant degree of mixing in the ocean, (iv) a constant surface ocean air-sea CO2 disequilibrium with time, and (v) that preformed alkalinity can be sufficiently estimated by salinity or salinity and temperature. Here, these assumptions are evaluated using simulated “model-truth” of Cant. The results give the IG-TTD method a range of uncertainty from 7.8% to 13.6% (11.4 Pg C to 19.8 Pg C) due to above assumptions, which is about half of the uncertainty derived in previous model studies. Assumptions (ii), (iv) and (iii) are the three largest sources of uncertainties, accounting for 5.5%, 3.8% and 3.0%, respectively, while assumptions (i) and (v) only contribute about 0.6% and 0.7%. Regionally, the Southern Ocean contributes the largest uncertainty, of 7.8%, while the North Atlantic contributes about 1.3%. Our findings demonstrate that spatial-dependency of , and temporal changes in tracer saturation and air-sea CO2 disequilibrium have strong compensating effect on the estimated Cant. The values of these parameters should be quantified to reduce the uncertainty of IG-TTD; this is increasingly important under a changing ocean climate.
-
A climatically induced acceleration in ocean-driven melting of Antarctic ice shelves would have consequences for both the discharge of continental ice into the ocean and thus global sea level, and for the formation of Antarctic Bottom Water and the oceanic meridional overturning circulation. Using a novel gas-tight in situ water sampler, noble gas samples have been collected from six locations beneath the Filchner Ice Shelf, the first such samples from beneath an Antarctic ice shelf. Helium and neon are uniquely suited as tracers of glacial meltwater in the ocean. Basal meltwater fractions range from 3.6% near the ice shelf base to 0.5% near the sea floor, with distinct regional differences. We estimate an average basal melt rate for the Filchner-Ronne Ice Shelf of 177 ± 95 Gt/year, independently confirming previous results. We calculate that up to 2.7% of the meltwater has been refrozen, and we identify a local source of crustal helium.
-
A likely important feature of the poorly understood aerosol-cloud interactions over the Southern Ocean (SO) is the dominant role of sea spray aerosol, versus terrestrial aerosol. Ice nucleating particles (INPs), or particles required for heterogeneous ice nucleation, present over the SO have not been studied in several decades. In this study, boundary layer aerosol properties and immersion freezing INP number concentrations (nINPs) were measured during a ship campaign that occurred south of Australia (down to 53°S) in March–April 2016. Ocean surface chlorophyll a concentrations ranged from 0.11 to 1.77 mg/m3, and nINPs were a factor of 100 lower than historical surveys, ranging from 0.38 to 4.6 m−3 at −20 °C. The INP population included organic heat-stable material, with contributions from heat-labile material. Lower INP source potentials of SO seawater samples compared to Arctic seawater were consistent with lower ice nucleating site densities in this study compared to north Atlantic air masses.
-
The multi-temporal scales of two physical characteristics (areas and occurrence time) of the Ross Sea Polynya (RSP) in Antarctica were analysed using a sea-ice concentration data set (1979–2014) derived from the Scanning Multichannel Microwave Radiometer, the Special Sensor Microwave Imager and Sensor Microwave Imager Sounder. Then, the Ensemble Empirical Mode Decomposition (EEMD) was applied to the data sets to decompose signals into finite numbers of intrinsic mode functions and a residual mode: long time trend. This approach allowed us to understand the long-term variability of the RSP area and occurrence in response to atmospheric forcing through teleconnections between low and high latitudes by comparing the Nino3.4 and Southern Annular Mode (SAM) indices. The nonlinear trend of the RSP areas derived from the EEMD residual had an upward trending shift in the early 1990s and was fairly consistent with the nonlinear trend of Nino3.4. However, the trend of RSP occurrence time progressively increased and had a significant effect on the long time scale. The trend of the RSP area is significantly correlated (+0.98) with the ratio of the trend of the meridional to zonal wind components related with the nonlinearity of Nino3.4, suggesting that meridional wind stress dominated the changes of the polynya area in the Ross Sea. In addition, the nonlinear trends between the SAM and RSP occurrence time show a strong positive correlation, contributing to the earlier onset of polynya expansion and delayed connection with the open ocean owing to enhanced southerly winds.
-
Direct measurement of precipitation in the Antarctic using ground-based instruments is important to validate the results from climate models, reanalyses and satellite observations. Quantifying precipitation in Antarctica faces many unique challenges such as wind and other technical difficulties due to the harsh environment. This study compares a variety of precipitation measurements in Antarctica, including satellite data and reanalysis fields at Rothera Station, Antarctica Peninsula. The tipping bucket gauges (TBGs) were less sensitive than laserbased sensors (LBSs). The most sensitive LBS (Visibility and Present Weather Sensor, VPF-730) registered 276 precipitation days, while the most sensitive TBG (Universal Precipitation Gauge, UPG-1000) detected 152 precipitation days. Case studies of the precipitation and seasonal accumulation results show the VPF-730 to be the most reliable precipitation sensor of the evaluated instruments. The precipitation amounts given by the reanalyses were positively correlated with wind speed. The precipitation from the Japanese 55-year Reanalysis was most affected by wind speed. Case studies also show that during low wind periods, precipitation measurements from the instruments were very close to the precipitation measurement given by the Global Precipitation Climatology Project (GPCP) 1-degreedaily (1DD) data. During strong wind events, the GPCP 1DD did not fully capture the effect of wind, accounting for the relatively small precipitation amount. The Laser Precipitation Monitor (LPM) and Campbell Scientific-700 (CS700H) experienced instrumental errors during the study, which caused the precipitation readings to become exceedingly high and low, respectively. Installing multiple LBSs in different locations (in close proximity) can help identify inconsistency in the readings.
-
The establishment of a modern-like monsoon climate in East Asia by the early Miocene was a complex process forced by several factors, and previous studies paid less attention to global cooling. Here we investigate this process using climate modeling by considering changes in topography and global cooling under the early Miocene boundary conditions. Using early Miocene paleogeography and an atmospheric CO2 concentration of 560 ppmv, our model results indicate that a nonzonal climate pattern has appeared in East China but that this climate exhibits weak precipitation and wind seasonality. Such seasonality strengthens as the concentration of atmospheric CO2 decreases from 560 to 420 ppmv and resembles the modern-like condition after the growth of the Antarctic ice sheet. Although the development of East Asian topography can further strengthen this seasonality, our results indicate that global cooling is also pivotal for the establishment of a modern-like monsoon climate in East Asia.
-
An idealized eddy-resolving numerical model, with topographic features common to the southern Weddell Sea, is constructed to study mechanisms through which warm deep water enters a wide continental shelf with a trough. The open ocean, represented by a 1700 m deep channel, is connected to a 400 m deep shelf with a continental slope. The shelf is narrow (50 km) in the east but widens to 300 km at the center of the model domain. Over the narrow shelf, the slope front is balanced by wind-driven Ekman downwelling and counteracting eddy overturning, favoring on-shelf transport of warm water in summer scenarios when fresher surface water is present. Over the wide shelf, the Ekman downwelling ceases, and the mesoscale eddies relax the front. Inflow of warm water is sensitive to along-shelf salinity gradients and is most efficient when denser water over the wide shelf favors up-slope eddy transport along isopycnals of the V-shaped slope front. Inflow along the eastern side of the trough cannot penetrate the sill region due to potential vorticity constraints, while along the western trough flank, eddy-induced inflow crosses the sill and reaches the ice front. The warm inflow into the trough is sensitive to the density of the outflowing dense shelf water. For weaker winds, absence of the dense water outflow leads to a reversal of the trough circulation and a strong inflow of warm water, while for stronger winds, baroclinic effects become less important and the inflow is similar to experiments including dense water outflow.
-
We present a global ocean climatology of dissolved inorganic carbon δ13C (‰) corrected for the 13C-Suess effect, preindustrial δ13C. This was constructed by first using Olsen and Ninnemann's (2010) back-calculation method on data from 25 World Ocean Circulation Experiment cruises to reconstruct the preindustrial δ13C on sections spanning all major oceans. Next, we developed five multilinear regression equations, one for each major ocean basin, which were applied on the World Ocean Atlas data to construct the climatology. This reveals the natural δ13C distribution in the global ocean. Compared to the modern distribution, the preindustrial δ13C spans a larger range of values. The maxima, of up to 1.8‰, occurs in the subtropical gyres of all basins, in the upper and intermediate waters of the North Atlantic, as well as in mode waters with a Southern Ocean origin. Particularly strong gradients occur at intermediate depths, revealing a strong potential for using δ13C as a tracer for changes in water mass geometry at these levels. Further, we identify a much tighter relationship between δ13C and apparent oxygen utilization (AOU) than between δ13C and phosphate. This arises because, in contrast to phosphate, AOU and δ13C are both partly reset when waters are ventilated in the Southern Ocean and underscore that δ13C is a highly robust proxy for past changes in ocean oxygen content and ocean ventilation. Our global preindustrial δ13C climatology is openly accessible and can be used, for example, for improved model evaluation and interpretation of sediment δ13C records.
-
Ice shelves in the Amundsen Sea Embayment have thinned, accelerating the seaward flow of ice sheets upstream over recent decades. This imbalance is caused by an increase in the ocean-driven melting of the ice shelves. Observations and models show that the ocean heat content reaching the ice shelves is sensitive to the depth of thermocline, which separates the cool, fresh surface waters from warm, salty waters. Yet the processes controlling the variability of thermocline depth remain poorly constrained. Here we quantify the oceanic conditions and ocean-driven melting of Cosgrove, Pine Island Glacier (PIG), Thwaites, Crosson, and Dotson ice shelves in the Amundsen Sea Embayment from 1991 to 2014 using a general circulation model. Ice-shelf melting is coupled to variability in the wind field and the sea-ice motions over the continental shelf break and associated onshore advection of warm waters in deep troughs. The layer of warm, salty waters at the calving front of PIG and Thwaites is thicker in austral spring (June–October) than in austral summer (December–March), whereas the seasonal cycle at the calving front of Dotson is reversed. Furthermore, the ocean-driven melting in PIG is enhanced by an asymmetric response to changes in ocean heat transport anomalies at the continental shelf break: melting responds more rapidly to increases in ocean heat transport than to decreases. This asymmetry is caused by the inland deepening of bathymetry and the glacial meltwater circulation around the ice shelf.
-
While the number of surface ocean CO2 partial pressure (pCO2) measurements has soared the recent decades, the Southern Ocean remains undersampled. Williams et al. (2017, https://doi.org/10.1002/2016GB005541) now present pCO2 estimates based on data from pH-sensor equipped Bio-Argo floats, which have been measuring in the Southern Ocean since 2014. The authors demonstrate the utility of these data for understanding the carbon cycle in this region, which has a large influence on the distribution of CO2 between the ocean and atmosphere. Biogeochemical sensors deployed on autonomous platforms hold the potential to shape our view of the ocean carbon cycle in the coming decades.
-
The Southern Ocean (SO) carbon sink has strengthened substantially since the year 2000, following a decade of a weakening trend. However, the surface ocean pCO2 data underlying this trend reversal are sparse, requiring a substantial amount of extrapolation to map the data. Here we use nine different pCO2 mapping products to investigate the SO trends and their sensitivity to the mapping procedure. We find a robust temporal coherence for the entire SO, with eight of the nine products agreeing on the sign of the decadal trends, that is, a weakening CO2 sink trend in the 1990s (on average 0.22 ± 0.24 Pg C yr−1 decade−1), and a strengthening sink trend during the 2000s (−0.35 ± 0.23 Pg C yr−1 decade−1). Spatially, the multiproduct mean reveals rather uniform trends, but the confidence is limited, given the small number of statistically significant trends from the individual products, particularly during the data-sparse 1990–1999 period.
-
Ice shelves around Antarctica are vulnerable to an increase in ocean-driven melting, with the melt rate depending on ocean temperature and the strength of flow inside the ice-shelf cavities. We present measurements of velocity, temperature, salinity, turbulent kinetic energy dissipation rate, and thermal variance dissipation rate beneath Pine Island Glacier ice shelf, West Antarctica. These measurements were obtained by CTD, ADCP, and turbulence sensors mounted on an Autonomous Underwater Vehicle (AUV). The highest turbulent kinetic energy dissipation rate is found near the grounding line. The thermal variance dissipation rate increases closer to the ice-shelf base, with a maximum value found ∼0.5 m away from the ice. The measurements of turbulent kinetic energy dissipation rate near the ice are used to estimate basal melting of the ice shelf. The dissipation-rate-based melt rate estimates is sensitive to the stability correction parameter in the linear approximation of universal function of the Monin-Obukhov similarity theory for stratified boundary layers. We argue that our estimates of basal melting from dissipation rates are within a range of previous estimates of basal melting.
-
Observed seasonal cycles in atmospheric potential oxygen (APO ~ O2 + 1.1 CO2) were used to evaluate eight ocean biogeochemistry models from the Coupled Model Intercomparison Project (CMIP5). Model APO seasonal cycles were computed from the CMIP5 air-sea O2 and CO2 fluxes and compared to observations at three Southern Hemisphere monitoring sites. Four of the models captured either the observed APO seasonal amplitude or phasing relatively well, while the other four did not. Many models had an unrealistic seasonal phasing or amplitude of the CO2 flux, which in turn influenced APO. By 2100 under RCP8.5, the models projected little change in the O2 component of APO but large changes in the seasonality of the CO2 component associated with ocean acidification. The models with poorer performance on present-day APO tended to project larger net carbon uptake in the Southern Ocean, both today and in 2100.
-
Investigating the interbasin deepwater exchange between the Pacific and Atlantic Oceans over glacial-interglacial climate cycles is important for understanding circum-Antarctic Southern Ocean circulation changes and their impact on the global Meridional Overturning Circulation. We use benthic foraminiferal δ13C records from the southern East Pacific Rise to characterize the δ13C composition of Circumpolar Deep Water in the South Pacific, prior to its transit through the Drake Passage into the South Atlantic. A comparison with published South Atlantic deepwater records from the northern Cape Basin suggests a continuous water mass exchange throughout the past 500 ka. Almost identical glacial-interglacial δ13C variations imply a common deepwater evolution in both basins suggesting persistent Circumpolar Deep Water exchange and homogenization. By contrast, deeper abyssal waters occupying the more southern Cape Basin and the southernmost South Atlantic have lower δ13C values during most, but not all, stadial periods. We conclude that these values represent the influence of a more southern water mass, perhaps Antarctic Bottom Water (AABW). During many interglacials and some glacial periods, the gradient between Circumpolar Deep Water and the deeper southern Cape Basin bottom water disappears suggesting either no presence of AABW or indistinguishable δ13C values of both water masses.
-
Abstract Modeling results have suggested that the circulation of the stratosphere and mesosphere in spring is strongly affected by the perturbations in heating induced by the Antarctic ozone hole. Here using both mesospheric MF radar wind observations from Rothera Antarctica (67°S, 68°W) as well as stratospheric analysis data, we present observational evidence that the stratospheric and mesospheric wind strengths are highly anti-correlated, and show their largest variability in November. We find that these changes are related to the total amount of ozone loss that occurs during the Antarctic spring ozone hole and particularly with the ozone gradients that develop between 57.5°S and 77.5°S. The results show that with increasing ozone loss during spring, winter conditions in the stratosphere and mesosphere persist longer into the summer. These results are discussed in the light of observations of the onset and duration of the Antarctic polar mesospheric cloud season.
-
To assess published hypotheses surrounding the recent slowdown in surface warming (hiatus), we compare five available global observational surface temperature estimates to two 30-member ensembles from the Norwegian Earth System Model (NorESM). Model ensembles are initialized in 1980 from the transient historical runs and driven with forcings used in the CMIP5 experiments and updated forcings based upon current observational understanding, described in Part 1. The ensembles' surface temperature trends are statistically indistinguishable over 1998–2012 despite differences in the prescribed forcings. There is thus no evidence that forcing errors play a significant role in explaining the hiatus according to NorESM. The observations fall either toward the lower portion of the ensembles or, for some observational estimates and regions, outside. The exception is the Arctic where the observations fall toward the upper ensemble bounds. Observational data set choices can make a large difference to findings of consistency or otherwise. Those NorESM ensemble members that exhibit Nino3.4 Sea Surface Temperature (SST) trends similar to observed also exhibit comparable tropical and to some extent global mean trends, supporting a role for El Nino Southern Oscillation in explaining the hiatus. Several ensemble members capture the marked seasonality observed in Northern Hemisphere midlatitude trends, with cooling in the wintertime and warming in the remaining seasons. Overall, we find that we cannot falsify NorESM as being capable of explaining the observed hiatus behavior. Importantly, this is not equivalent to concluding NorESM could simultaneously capture all important facets of the hiatus. Similar experiments with further, distinct, Earth System Models are required to verify our findings.
Explore
Topic
- klimatologi
- AABW (1)
- akkumulasjon (1)
- Amundsenhavet (1)
- analyser (1)
- Antarktis (12)
- antropogenisk CO2 (1)
- atmosfæren (9)
- batymetri (3)
- Belgica ekspedisjon (1)
- biogeokjemi (5)
- brehylle (2)
- bunnvann (1)
- cruiseturisme (1)
- drivhusgasser (2)
- Dronning Maud Land (5)
- fjernmåling (1)
- forurensning (1)
- fossilt brensel (1)
- gassutveksling (1)
- geofysikk (2)
- geovitenskap (1)
- glasiologi (8)
- global klimamodell (1)
- global oppvarming (7)
- havalkalisering (1)
- havis (4)
- havnivå (1)
- havnivåstigning (4)
- havstrømmer (2)
- hydrografi (2)
- innlandsis (6)
- isavsmelting (1)
- isbrem (3)
- iskjerner (3)
- iskrystaller (1)
- ismeltvann (1)
- isshelf (3)
- karbon syklus (3)
- karbondioksid (8)
- karbonlagring (1)
- kartlegging (1)
- klimaendringer (12)
- klimamodeller (4)
- kontinentalsokkel (1)
- målinger (2)
- marin biologi (1)
- marin organisk aerosol (1)
- marin zoologi (1)
- meteorologi (14)
- miljøendringer (1)
- modeller (1)
- nedbør (4)
- observasjoner (5)
- oppdagelsesreiser (1)
- oseanografi (9)
- ozonhull (1)
- ozonlaget (1)
- paleogeografi (2)
- paleoklimatologi (1)
- paleoseanografi (2)
- polarområdene (8)
- polynja (1)
- satellite bilder (2)
- satellitt bilder (1)
- satellitt observasjoner (1)
- seler (1)
- sjøis (4)
- skyer (2)
- smeltevann (2)
- smelting (2)
- solstråling (1)
- Sørishavet (22)
- Sørishavsstrømmen (2)
- sørlig oscillasjon (1)
- stabile isotoper (1)
- stratosfæren (1)
- temperatur (2)
- uorganisk karbon (1)
- utslipp (1)
- vannmasser (4)
- vannvirvler (1)
- vitenskap (1)
- vulkaner (1)
- Weddellhavet (2)
Resource type
- Journal Article (37)
Publication year
Online resource
- yes (37)