Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 7 resources
-
The McMurdo Dry Valleys are one of the most arid environments on Earth. Over the soil landscape for the majority of the year, biological and ecosystem processes in the dry valleys are constrained by the low temperatures and limited availability of water. The prevalence of these physical limitations in controlling biological and ecosystem processes makes the dry valleys a climatesensitive system, poised to experience substantial changes following projected future warming. Short-duration increases in summer temperatures are associated with pulses of water from melting ice reserves, including glaciers, snow and permafrost. Such pulses alter soil geochemistry by mobilizing and redistributing soil salts (via enhanced weathering, solubility and mobility), which can alter habitat suitability for soil organisms. Resulting changes in soil community composition or distribution may alter the biogeochemical processes in which they take part. Here, we review the potential impacts of meltwater pulses and present new field data documenting instances of meltwater pulse events that result from different water sources and hydrological patterns, and discuss their potential influence on soil biology and biogeochemistry. We use these examples to discuss the potential impacts of future climate change on the McMurdo Dry Valley soil ecosystem.Keywords: Water pulse; climate change; polar desert; International Polar Year; discrete warming events; soil biogeochemistry.
-
These two edited volumes, which cover much of the same ground, both begin from a common premise: polar tourism, as its been experienced by wealthy travellers for over a century, has a very definite shelf life. With the acceleration of global climate change, the Arctic and Antarctic are being changed, changed rapidly, perhaps permanently and, if one pays attention to the news, seemingly by the day. When combined with popular documentaries and feature films like An inconvenient truth, March of the penguins and Happy feet potential polar tourists have been sensitized to see the polar regions not as implacably hostile wastes once challenged only by the likes of Nansen, Amundsen, Scott and Shackleton but as irreplaceably fragile zones that, once lost, will take some essential part of the planet with them.
-
The ecosystems of the western Antarctic Peninsula, experiencing amongst the most rapid trends of regional climate warming worldwide, are important “early warning” indicators for responses expected in more complex systems elsewhere. Central among responses attributed to this regional warming are widely reported population and range expansions of the two native Antarctic flowering plants, Deschampsia antarctica and Colobanthus quitensis. However, confirmation of the predictions of range expansion requires baseline knowledge of species distributions. We report a significant southwards and westwards extension of the known natural distributions of both plant species in this region, along with several range extensions in an unusual moss community, based on new survey work in a previously unexamined and un-named low altitude peninsula at 69º22.0’S 71º50.7’W in Lazarev Bay, north-west Alexander Island, southern Antarctic Peninsula. These plant species therefore have a significantly larger natural range in the Antarctic than previously thought. This site provides a potentially important monitoring location near the southern boundary of the region currently demonstrated to be under the influence of rapidly changing climate trends. Combined radiocarbon and lead isotope radiometric dating suggests that this location was most likely deglaciated sufficiently to allow peat to start accumulating towards the end of the 19th century, which we tentatively link to a phase of post-1870 climate amelioration. We conclude that the establishment of vegetation in this location is unlikely to be linked to the rapid regional warming trends recorded along the Antarctic Peninsula since the mid-20th century. Antarctic plants, distribution limits, peat accumulation, dating.
-
We report on ground-based atmospheric measurements and emission estimates of the four anthropogenic hydrofluorocarbons (HFCs) HFC-365mfc (CH3CF2CH2CF3, 1,1,1,3,3-pentafluorobutane), HFC-245fa (CHF2CH2CF3, 1,1,1,3,3-pentafluoropropane), HFC-227ea (CF3CHFCF3, 1,1,1,2,3,3,3-heptafluoropropane), and HFC-236fa (CF3CH2CF3, 1,1,1,3,3,3-hexafluoropropane). In situ measurements are from the global monitoring sites of the Advanced Global Atmospheric Gases Experiment (AGAGE), the System for Observations of Halogenated Greenhouse Gases in Europe (SOGE), and Gosan (South Korea). We include the first halocarbon flask sample measurements from the Antarctic research stations King Sejong and Troll. We also present measurements of archived air samples from both hemispheres back to the 1970s. We use a two-dimensional atmospheric transport model to simulate global atmospheric abundances and to estimate global emissions. HFC-365mfc and HFC-245fa first appeared in the atmosphere only ∼1 decade ago; they have grown rapidly to globally averaged dry air mole fractions of 0.53 ppt (in parts per trillion, 10−12) and 1.1 ppt, respectively, by the end of 2010. In contrast, HFC-227ea first appeared in the global atmosphere in the 1980s and has since grown to ∼0.58 ppt. We report the first measurements of HFC-236fa in the atmosphere. This long-lived compound was present in the atmosphere at only 0.074 ppt in 2010. All four substances exhibit yearly growth rates of >8% yr−1 at the end of 2010. We find rapidly increasing emissions for the foam-blowing compounds HFC-365mfc and HFC-245fa starting in ∼2002. After peaking in 2006 (HFC-365mfc: 3.2 kt yr−1, HFC-245fa: 6.5 kt yr−1), emissions began to decline. Our results for these two compounds suggest that recent estimates from long-term projections (to the late 21st century) have strongly overestimated emissions for the early years of the projections (∼2005–2010). Global HFC-227ea and HFC-236fa emissions have grown to average values of 2.4 kt yr−1 and 0.18 kt yr−1 over the 2008–2010 period, respectively.
Explore
Topic
- klimaendringer
- Antarktis (3)
- atmosfæren (1)
- biogeokjemi (1)
- biologi (1)
- bokanmeldelser (1)
- cruiseturisme (1)
- Det internasjonale geofysiske år (IGY) (1)
- Det Internasjonale polaråret 2007 (2)
- drivhusgasser (1)
- Dronning Maud Land (3)
- glasiologi (2)
- global oppvarming (3)
- hårgress (1)
- havnivåstigning (3)
- IPY (1)
- jord (1)
- klimatologi (1)
- målinger (1)
- miljøvern (1)
- økologi (1)
- økosystemer (1)
- perleurt (1)
- planter (1)
- polarforskning (2)
- polarområdene (1)
- polarørken (1)
- Sørishavet (1)
- turisme (1)
Resource type
- Book Section (2)
- Journal Article (5)