Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 18 resources
-
Ice at or below the surface of the planet Earth is an important part of the climate system. The solid phase of water has two unique characteristics which make it both an early indicator of climate change and a global player. First, if warmed to the melting point at 0°C, higher air temperatures and/or higher long-wave back radiation just increase the melting rate but not - as with all other surfaces- the temperature, which stays at 0°C. Small icecaps and mountain glaciers thus become early indicators of a changed climate. Second. If seawater is cooled to the freezing point at about- 1.8"C. the sea ice formation process ejects salt causing the denser water to sink, thereby filling the global ocean interior with very cold water. The location where most of this deep convection occurs is strongly dependent on the freshwater balance and thus on the average salinity of ocean basins. Present ocean configuration and ocean topography, as well as precipitation distribution, make the northern North Atlantic more saline than any other high latitude ocean part and thus the site with most of this deep water formation. Sea ice formation is therefore of high significance for the European climate. Since it drives the near surface warm North Atlantic current northward off the European coast in compensation for southward deep water flow in the western Atlantic, northwestern Europe is warmer by about 4°C than the same latitudes on the eastern Pacific coast of America.
-
With the recognition that global climate change may adversely affect human health, there has been an increase in relevant research worldwide. In the Antarctic medical research has been largely directed at the potential health effects of stratospheric ozone depletion. For over a decade continuous broad-band measurements of ultraviolet radiation (UVR) have been made at all Australian stations. Results of UV measurements are presented and comparisons made with the “ozone hole” moving over the stations, erythemal UVR increasing by a factor of more than 2.5 over a three day period. During late spring and despite the large difference in latitude, Davis, Antarctica, and Melbourne, Australia, are very similar in erythemal UVR. Antarctic immunological and photo biological research is presented and the role of UVR discussed. Epidemiological data is reviewed for short-term links between UVR and related disease. With increased awareness of the dangers of UVR and consequent changes in sun-related behavior, the incidence of the acute effects of UVR is much lower than decades ago. As the itinerant Antarctic population spends a maximum of 12-18 months at a time in that location it is an excellent control group for studies on the health effects of UVR on permanent populations at similar latitudes in the Arctic.
-
The effects of UV-B exclusion and enhancement of solar radiation on photosynthesis of the two phanerogams which occur in the maritime Antarctic, Deschampsia antarctica and Colobanthus quitensis, and the moss Sanionia uncinats were investigated. Data on air temperature and solar radiation illustrate a drastic seasonal variation. Daily O3 column mean values and UV-B measured at ground level document the occurrence of the O3“hole” in the spring of 1997, with a concomitant increase in UV-B. The grass, D. antarctica, exhibited a broad temperature optimum for photosynthesis between 10–25°C while photosynthesis did not saturate even at high irradiance. The high water use efficiencies measured in the grass may be one of the features explaining the presence of this species in the maritime Antarctic. The net photosynthesis response to intercellular CO2 (A/ci) for D. antarctica was typical of a C3 plant. Exposure to a biologically effective UV-B irradiance of 0.74 W M-2 did not result in any significant change in either the maximum rate of photosynthesis at saturating CO2 and light, or in the initial carboxylation efficiency of Rubisco. (Vc,max). Furthermore while ambient (or enhanced) solar UV-B did not affect photochemical yield, measured in the field, of C. quitensis and D. antarctica, UV-B enhancement did affect negatively photochemical yield in S. uncinata. In D. antarctica plants, exposure to UV-B at low irradiances elicited increased flavonoid synthesis. The observed effects of UV-B enhancement on the moss (decreased photochemical yield) and the grass (increase in flavonoids) require further, separate investigation.
-
Observation of the retreat and disintegration of ice shelves around the Antarctic Peninsula during the last three decades and associated changes in air temperature, measured at various meteorological stations on the Antarctic Peninsula, are reviewed. The climatically induced retreat of the northern Larsen Ice Shelf on the east coast and of the Wordie, George VI, and Wilkins ice shelves on the west coast amounted to about 10 000 km2 since the mid-1960s. A summary is presented on the recession history of the Larsen Ice Shelf and on the collapse of those sections north of Robertson Island in early 1995. The area changes were derived from images of various satellites, dating back to a late 1963 image from the recently declassified US Argon space missions. This photograph reveals a previously unknown, minor advance of the northern Larsen Ice Shelf before 1975. During the period of retreat a consistent and pronounced warming trend was observed at the stations on both east and west coasts of the Antarctic Peninsula, but a major cause of the fast retreat and final collapse of the northernmost sections of the Larsen Ice Shelf were several unusually warm summers. Temperature records from the nearby station Marambio show that a positive mean summer temperature was reached for the first time in 1992-93. Recent observations indicate that the process of ice shelf disintegration is proceeding further south on both sides of the Antarctic Peninsula.
-
The growing salience of interactions between the functionally broad but geographically narrow regimes for the polar regions and the geographically broad but functionally specific regimes emerging to deal with global environmental changes directs attention to the issue of institutional interplay. Interplay among regimes can cause mutual interference or foster synergy. Adopting a pragmatic stance that assumes no fundamental changes in international society, this essay suggests ways to: (1) adapt global regimes dealing with ozone depletion, climate change and biodiversity to the conditions prevailing in the polar regions; and (2) ensure that concerns arising in the polar regions receive serious consideration in global forums. Specific suggestions range from modest initiatives involving monitoring and assessment to more ambitious initiatives, such as the establishment of a chamber of regions in global regimes.
-
The most consistent means of investigating the global sea ice cover is by satellite passive microwave sensors, as these are independent of illumination and cloud cover. The Nimbus 7 Scanning Multichannel Microwave Radiometer (SMMR) and the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave Imager (SSMI) provide information on the global sea ice cover from 1978 to present. The two instruments flew simultaneously during a 6-week overlap period in July and August 1987, thus enabling intercomparison of the two sensors. Brightness temperatures are corrected for instrument drift and calibration differences in order to produce continuous time series of monthly averaged Arctic and Antarctic sea ice extent and sea ice area through the use of the NOrwegian Remote Sensing EXperiment (NORSEX) algorithm, which relates brightness temperatures to ice concentration. Statistical analysis on the time series estimates the decreases in Arctic ice extent and ice area to be 4.5% and 5.7%, respectively, during the 16.8-year observation period. The overall trends established here serve to better define and strengthen earlier assertions of a reduced ice cover, based on analysis of SMMR and SSMI data taken separately. These results are consistent with GCM simulations that suggest retreat of the sea ice cover under global warming scenarios.
-
Many invertebrates show flexibility in their life cycles and are likely to respond to changes in climate as they have in the past. However, changes in temperature and photoperiod may disturb the life cycles of some existing polar invertebrates while continuing to constrain the polewards migration of more temperate species. Higher plants are likely to have higher productivity as temperatures and atmospheric CO2 levels increase but this productivity will be reduced by exposure to increasing UV-B radiation. Higher plants migrate more slowly than the rate at which climate is predicted to change and many species will be trapped in supra-optimal climates. Both mosses and lichens can migrate faster than higher plants, propagules of non-polar species already reaching the Antarctic, but they have fewer mechanisms of responding to changing environments. Polar vegetation and ecosystems provide feedback to the climate system: positive feedbacks are associated with decreases in reflectivity and increased carbon emissions from warm ing soils. In the Antarctic, feedback and responses to environmental change will be smaller than in the Arctic because of the less responsive cryptogams which dominate the Antarctic, the paucity of Antarctic soils, and geographical barriers to plant and invertebrate migrations.
-
Large-scale melting phenomena such as meltwater drainage channels and meltwater accumulation basins of frozen lakes were surveyed on the land ice mass in Jutulgryta, Dronning Maud Land, Antarctica, during the Norwegian Antarctic Research Expedition in 1989–90 (NARE 1989–90). The largest frozen lake that was observed was close to 1 km in width. These melting features were also detected in a Landsat Thematic Mapper image recorded on 12 February 1990. Then, during NARE 1993–94, a 5year glaciological programme was started in this area. In spite of negative air temperatures and the presence of a frozen ice surface, sub-surface melting and runoff were found within the uppermost metre in blue-ice fields. The sub-surface melting is a consequence of solar radiative penetration and absorption within the ice, i.e. the “solid-state-greenhouse effect”. Temperatures in blue ice were about 6°C higher than for snow. Internal melt and meltwater transport were observed throughout the 1 month of measurements. The conditions for active melting in Jutulgryta are probably marginal. A slight increase of air temperatures can result in more “classical” surface melting, whereas a cooling may disable sub-surface melting. Studies of how the extent and characteristics of the melting features change with time can be particularly valuable as indicators of climate change. This ongoing programme clearly identifies the importance of analyzing how these melting features originate, of mapping their present areal distribution, of determining how sensitive they are to climate change and of Studying changes in the past and possible changes in the future.
-
The sea ice does not only determine the ecology of ice biota, but it also influences the pelagic systems under the ice cover and at ice edges. In this paper, new estimates of Arctic and Antarctic production of biogenic carbon are derived, and differences as well as similarities between the two oceans are examined. In ice-covered seas, high algal concentrations (blooms) occur in association with several types of conditions. Blooms often lead to high sedimentation of intact cells and faecal pellets. In addition to ice-related blooms, there is progressive accumulation of organic matter in Arctic multi-year ice, whose fate may potentially be similar to that of blooms. A fraction of the carbon fixed by microalgae that grow in sea ice or in relation to it is exported out of the production zone. This includes particulate material sinking out of the euphotic zone, and also material passed on to the food web. Pathways through which ice algal production does reach various components of the pelagic and benthic food webs, and through them such top predators as marine mammals and birds, are discussed. Concerning global climate change and biogeochemical fluxes of carbon, not all export pathways from the euphotic zone result in the sequestration of carbon for periods of hundreds of years or more. This is because various processes, that take place in both the ice and the water column, contribute to mineralize organic carbon into CO2 before it becomes sequestered. Processes that favour the production and accumulation of biogenic carbon as well as its export to deep waters and sequestration are discussed, together with those that influence mineralization in the upper ice-covered ocean.
Explore
Topic
- klimaendringer
- akkumulasjon (2)
- Antarktis (11)
- atmosfæren (1)
- biodiversitet (2)
- biogeokjemi (1)
- biologi (2)
- blåis (1)
- botanikk (2)
- brehylle (1)
- drivhuseffekten (2)
- Dronning Maud Land (6)
- dyreliv (1)
- ekspedisjoner (1)
- epidemiologi (1)
- fiskeri (1)
- fjernanalyse (1)
- flora (1)
- forskning (1)
- fotobiologi (1)
- fotosyntese (1)
- geofysikk (1)
- glasiologi (7)
- global oppvarming (1)
- havbruksnæring (1)
- havis (3)
- havnivå (1)
- immunologi (1)
- innlandsis (2)
- internasjonal samarbeid (1)
- isbre (1)
- isbreer (3)
- isbrem (1)
- isshelf (4)
- isstrøm (2)
- karbondioksid (2)
- klimagasser (2)
- klimapolitikk (1)
- kryosfæren (1)
- lav (1)
- marin biologi (1)
- meteorologi (2)
- moser (2)
- NARE 1989/90 (2)
- NARE 1992/93 (2)
- NARE 1993/94 (1)
- NARE 1996/97 (1)
- NARE 1997/98 (1)
- økologi (2)
- ozonlaget (2)
- paleoatmosfæren (1)
- permafrost (1)
- planter (2)
- polarområdene (6)
- satellite mikrobølgesensorer (1)
- satellitt (1)
- satellittbilder (1)
- satellitteknologi (1)
- sjøvann (1)
- snø (1)
- Sørishavet (1)
- telemetri (1)
- temperaturforhold (1)
- ultrafiolett stråling (1)
- vann (1)
- vannressurser (1)
- virvelløse dyr (1)
Resource type
- Book (2)
- Book Section (5)
- Journal Article (11)