Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 8 resources
-
We use a network of eight ice cores from coastal Dronning Maud Land (DML), Antarctica, to examine the role of the tropical ENSO (El Niño-Southern Oscillation) in the temporal variability of δ18O in annual accumulation. The longest record from the S100 ice core covering the period 1737–1999 is used to analyze the teleconnections between the tropical Pacific and coastal DML on decadal scales and longer. A shorter stacked coastal DML δ18O series spanning 1955–1999 is constructed to assess the variability of ENSO teleconnection on interannual scales. Results suggest that, on typical ENSO timescales of 2–6 years, the strength of the teleconnection varies in time, being stronger for years with generally negative phase of the Southern Annular Mode (SAM). On the timescales of approximately two decades (bidecadal), positive isotope anomalies are associated with oceanic warming and a westward sea surface temperature (SST) gradient in the equatorial Pacific. Bidecadal variability in SAM, forced by the tropical Pacific, is proposed as a critical element in the teleconnection. Our analysis suggests that a multidecadal positive trend in the annual mean δ18O values from the analyzed cores can be indicative of the atmospheric warming that begun in this part of the DML already in the 1910s. The trend in δ18O, quantified in terms of long-term surface air temperature (SAT) changes, is consistent with the instrumental data. Yet, we speculate that the accurate estimation of SAT trends requires an assessment of the potential role of secular SAM and sea ice extent changes in shaping the isotopic signal.
-
Precise knowledge of the phase relationship between climate changes in the two hemispheres is a key for understanding the Earth’s climate dynamics. For the last glacial period, ice core studies1,2 have revealed strong coupling of the largest millennial-scale warm events in Antarctica with the longest Dansgaard–Oeschger events in Greenland3,4,5 through the Atlantic meridional overturning circulation6,7,8. It has been unclear, however, whether the shorter Dansgaard–Oeschger events have counterparts in the shorter and less prominent Antarctic temperature variations, and whether these events are linked by the same mechanism. Here we present a glacial climate record derived from an ice core from Dronning Maud Land, Antarctica, which represents South Atlantic climate at a resolution comparable with the Greenland ice core records. After methane synchronization with an ice core from North Greenland9, the oxygen isotope record from the Dronning Maud Land ice core shows a one-to-one coupling between all Antarctic warm events and Greenland Dansgaard–Oeschger events by the bipolar seesaw6. The amplitude of the Antarctic warm events is found to be linearly dependent on the duration of the concurrent stadial in the North, suggesting that they all result from a similar reduction in the meridional overturning circulation.
-
Measurement of light intensity transmission was carried out on an ice core S100 from coastal Dronning Maud Land (DML). Ice lenses were observed in digital pictures of the core and recorded as peaks in the light transmittance record. The frequency of ice layer occurrence was compared with climate proxy data (e.g. oxygen isotopes), annual accumulation rate derived from the same ice core, and available meteorological data from coastal stations in DML. The mean annual frequency of melting events remains constant for the last ∼150 years. However, fewer melting features are visible at depths corresponding to approximately 1890–1930 AD and the number of ice lenses increases again after 1930 AD. Most years during this period have negative summer temperature anomalies and positive annual accumulation anomalies. The increase in melting frequency around ∼1930 AD corresponds to the beginning of a decreasing trend in accumulation and an increasing trend in oxygen isotope record. On annual time scales, a relatively good match exists between ice layer frequencies and mean summer temperatures recorded at nearby meteorological stations (Novolazarevskaya, Sanae, Syowa and Halley) only for some years. There is a poor agreement between melt feature frequencies and oxygen isotope records on longer time scales. Melt layer frequency proved difficult to explain with standard climate data and ice core derived proxies. These results suggest a local character for the melt events and a strong influence of surface topography.
-
The climatic features of Antarctic waters are more extreme and constant than in the Arctic. The Antarctic has been isolated and cold longer than the Arctic. The polar ichthyofaunas differ in age, endemism, taxonomy, zoogeographic distinctiveness and physiological tolerance to environmental parameters. The Arctic is the connection between the Antarctic and the temperate-tropical systems. Paradigmatic comparisons of the pathways of adaptive evolution of fish from both poles address the oxygen-transport system and the antifreezes of northern and southern species, (i) Haemoglobin evolution has included adaptations at the biochemical, physiological and molecular levels. Within the study of the molecular bases offish cold adaptation, and taking advantage of the information on haemoglobin amino acid sequence, we analysed the evolutionary history of the ? and ? globins of Antarctic, Arctic and temperate haemoglobins as a basis for reconstructing phylogenetic relationships. In the trees, the constant physico-chemical conditions of the Antarctic waters are matched by clear grouping of globin sequences, whereas the variability typical of the Arctic ecosystem corresponds to high sequence variation, reflected by scattered intermediate positions between the Antarctic and non-Antarctic clades. (ii) Antifreeze (glyco)proteins and peptides allow polar fish to survive at sub-zero temperatures. In Antarctic Notothenioidei the antifreeze gene evolved from a trypsinogen-like serine protease gene. In the Arctic polar cod the genome contains genes which encode nearly identical proteins, but have evolved from a different genomic locus–a case of convergent evolution.
Explore
Topic
- klima
- Antarktis (2)
- biokjemi (1)
- biologi (1)
- Dronning Maud Land (3)
- ekspedisjoner (2)
- evolusjon (1)
- fauna (1)
- fisker (1)
- forskning (1)
- forskningsstasjoner (2)
- forvaltning (2)
- fysiologi (1)
- geofysikk (1)
- glasiologi (4)
- havis (2)
- hvalfangst (2)
- klimaendringer (2)
- miljø (3)
- naturressursforvaltning (2)
- naturvitenskapelig (2)
- Norge (2)
- økosystemer (1)
- polarforskning (2)
- polarområdene (2)
- Sørishavet (4)
- stratigrafi (1)
- zoogeografi (1)
Resource type
- Book (2)
- Journal Article (6)