Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 43 resources
-
The Getz Ice Shelf is one of the largest sources of fresh water from ice shelf basal melt in Antarctica. We present new observations from three moorings west of Siple Island 2016–2018. All moorings show a persistent flow of modified Circumpolar Deep Water toward the western Getz Ice Shelf. Unmodified Circumpolar Deep Water with temperatures up to 1.5 °C reaches the ice shelf front in frequent episodes. These represent the warmest water observed at any ice shelf front in the Amundsen Sea. Mean currents within the warm bottom layer of 18–20 cm/s imply an advection time scale of 7 days from shelf break to ice shelf front. Zonal wind stress at the shelf break affects heat content at the ice shelf front on weekly to monthly time scales. Our 2-year mooring records also evince that upwelling over the shelf break controls thermocline depth on subannual to annual time scales.
-
In the Southern Ocean, polynyas exhibit enhanced rates of primary productivity and represent large seasonal sinks for atmospheric CO2. Three contrasting east Antarctic polynyas were visited in late December to early January 2017: the Dalton, Mertz, and Ninnis polynyas. In the Mertz and Ninnis polynyas, phytoplankton biomass (average of 322 and 354 mg chlorophyll a (Chl a)/m2, respectively) and net community production (5.3 and 4.6 mol C/m2, respectively) were approximately 3 times those measured in the Dalton polynya (average of 122 mg Chl a/m2 and 1.8 mol C/m2). Phytoplankton communities also differed between the polynyas. Diatoms were thriving in the Mertz and Ninnis polynyas but not in the Dalton polynya, where Phaeocystis antarctica dominated. These strong regional differences were explored using physiological, biological, and physical parameters. The most likely drivers of the observed higher productivity in the Mertz and Ninnis were the relatively shallow inflow of iron-rich modified Circumpolar Deep Water onto the shelf as well as a very large sea ice meltwater contribution. The productivity contrast between the three polynyas could not be explained by (1) the input of glacial meltwater, (2) the presence of Ice Shelf Water, or (3) stratification of the mixed layer. Our results show that physical drivers regulate the productivity of polynyas, suggesting that the response of biological productivity and carbon export to future change will vary among polynyas.
-
The buttressing potential of ice shelves is modulated by changes in subshelf melting, in response to changing ocean conditions. We analyze the temporal variability in subshelf melting using an autonomous phase-sensitive radio-echo sounder near the grounding line of the Roi Baudouin Ice Shelf in East Antarctica. When combined with additional oceanographic evidence of seasonal variations in the stratification and the amplification of diurnal tides around the shelf break topography (Gunnerus Bank), the results suggest an intricate mechanism in which topographic waves control the seasonal melt rate variability near the grounding line. This mechanism has not been considered before and has the potential to enhance local melt rates without advecting different water masses. As topographic waves seem to strengthen in a stratified ocean, the freshening of Antarctic surface water, predicted by observations and models, is likely to increase future basal melting in this area.
-
The Weddell Gyre (WG) is one of the main oceanographic features of the Southern Ocean south of the Antarctic Circumpolar Current which plays an influential role in global ocean circulation as well as gas exchange with the atmosphere. We review the state-of-the art knowledge concerning the WG from an interdisciplinary perspective, uncovering critical aspects needed to understand this system's role in shaping the future evolution of oceanic heat and carbon uptake over the next decades. The main limitations in our knowledge are related to the conditions in this extreme and remote environment, where the polar night, very low air temperatures, and presence of sea ice year-round hamper field and remotely sensed measurements. We highlight the importance of winter and under-ice conditions in the southern WG, the role that new technology will play to overcome present-day sampling limitations, the importance of the WG connectivity to the low-latitude oceans and atmosphere, and the expected intensification of the WG circulation as the westerly winds intensify. Greater international cooperation is needed to define key sampling locations that can be visited by any research vessel in the region. Existing transects sampled since the 1980s along the Prime Meridian and along an East-West section at ~62°S should be maintained with regularity to provide answers to the relevant questions. This approach will provide long-term data to determine trends and will improve representation of processes for regional, Antarctic-wide, and global modeling efforts—thereby enhancing predictions of the WG in global ocean circulation and climate.
-
We use ice flow modelling to simulate the englacial stratigraphy of Blåskimen Island, an ice rise in Dronning Maud Land and elucidate the evolution of this data-sparse region. We apply a thermo-mechanically coupled Elmer/Ice model to a profile along flowlines and through the ice-rise summit, where surface mass balance (SMB), flow velocity and ice stratigraphy were recently measured. We conclude that: (i) the ice rise is presently thickening at a rate of 0.5~0.6 m ice equivalent per year (mieq a−1), which is twice an earlier estimate using the field data and the input–output method; (ii) present thickening started 20–40 years in the past, before which the ice rise was in a steady state; (iii) SMB contrast between the upwind and downwind slopes was stronger than the present value by ~23% (or 0.15 mieq a−1) prior to ~1100 years ago. Since then, this contrast has been decreasing overall. We surmise that these SMB changes are likely a result of synoptic-scale atmospheric changes, rather than local atmospheric changes controlled by local ice topography. Our technique effectively assimilates geophysical data, avoiding the complexity of ice flow beneath the ice divide. Thus, it could be applied to other ice rises to elucidate the recent glacial retreat.
-
The Filchner-Ronne Ice Shelf, the ocean cavity beneath it, and the Weddell Sea that bounds it, form an important part of the global climate system by modulating ice discharge from the Antarctic Ice Sheet and producing cold dense water masses that feed the global thermohaline circulation. A prerequisite for modeling the ice sheet and oceanographic processes within the cavity is an accurate knowledge of the sub-ice sheet bedrock elevation, but beneath the ice shelf where airborne radar cannot penetrate, bathymetric data are sparse. This paper presents new seismic point measurements of cavity geometry from a particularly poorly sampled region south of Berkner Island that connects the Filchner and Ronne ice shelves. An updated bathymetric grid formed by combining the new data with existing data sets reveals several new features. In particular, a sill running between Berkner Island and the mainland could alter ocean circulation within the cavity and change our understanding of paleo-ice stream flow in the region. Also revealed are deep troughs near the grounding lines of Foundation and Support Force ice streams, which provide access for seawater with melting potential. Running an ocean tidal model with the new bathymetry reveals large differences in tidal current velocities, both within the new gridded region and further afield, potentially affecting sub-ice shelf melt rates.
-
Tabular iceberg calving and ice shelf retreat occurs after full-thickness fractures, known as rifts, propagate across an ice shelf. A quickly evolving rift signals a threat to the stability of Larsen C, the Antarctic Peninsula's largest ice shelf. Here we reveal the influence of ice shelf heterogeneity on the growth of this rift, with implications that challenge existing notions of ice shelf stability. Most of the rift extension has occurred in bursts after overcoming the resistance of suture zones that bind together neighboring glacier inflows. We model the stresses in the ice shelf to determine potential rift trajectories. Calving perturbations to ice flow will likely reach the grounding line. The stability of Larsen C may hinge on a single suture zone that stabilizes numerous upstream rifts. Elevated fracture toughness of suture zones may be the most important property that allows ice shelves to modulate Antarctica's contribution to sea level rise.
-
The responses of the Ross Ice Shelf (RIS) to the 16 September 2015 8.3 (Mw) Chilean earthquake tsunami (>75 s period) and to oceanic infragravity (IG) waves (50–300 s period) were recorded by a broadband seismic array deployed on the RIS from November 2014 to November 2016. Here we show that tsunami and IG-generated signals within the RIS propagate at gravity wave speeds (∼70 m/s) as water-ice coupled flexural-gravity waves. IG band signals show measureable attenuation away from the shelf front. The response of the RIS to Chilean tsunami arrivals is compared with modeled tsunami forcing to assess ice shelf flexural-gravity wave excitation by very long period (VLP; >300 s) gravity waves. Displacements across the RIS are affected by gravity wave incident direction, bathymetry under and north of the shelf, and water layer and ice shelf thicknesses. Horizontal displacements are typically about 10 times larger than vertical displacements, producing dynamical extensional motions that may facilitate expansion of existing fractures. VLP excitation is continuously observed throughout the year, with horizontal displacements highest during the austral winter with amplitudes exceeding 20 cm. Because VLP flexural-gravity waves exhibit no discernable attenuation, this energy must propagate to the grounding zone. Both IG and VLP band flexural-gravity waves excite mechanical perturbations of the RIS that likely promote tabular iceberg calving, consequently affecting ice shelf evolution. Understanding these ocean-excited mechanical interactions is important to determine their effect on ice shelf stability to reduce uncertainty in the magnitude and rate of global sea level rise.
-
The ice-shelf-fringed coast of Dronning Maud Land in East Antarctica contains numerous ice rises that influence the dynamics and mass balance of the region. However, only a few of these ice rises have been investigated in detail. Here, we present field measurements of Blåskimen Island, an isle-type ice rise adjacent to Fimbul Ice Shelf. This ice rise is largely dome shaped, with a pronounced ridge extending to the south-west from its summit (410 m a.s.l.). Its bed is mostly flat and about 100 m below the current sea level. Shallow radar-detected isochrones dated with a firn core reveal that the surface mass balance is higher on the south-eastern (upwind) slope than on the north-western (downwind) slope by ∼ 37 %, and this pattern has persisted for at least the past decade. Moreover, arches in radar stratigraphy suggest that the summit of the ice rise has been stable for ∼ 600 years. Ensemble estimates of the mass balance using the input–output method show that this ice rise has thickened by 0.12–0.37 m ice equivalent per year over the past decade.
-
Ice shelves play a vital role in regulating loss of grounded ice and in supplying freshwater to coastal seas. However, melt variability within ice shelves is poorly constrained and may be instrumental in driving ice shelf imbalance and collapse. High-resolution altimetry measurements from 2010 to 2016 show that Dotson Ice Shelf (DIS), West Antarctica, thins in response to basal melting focused along a single 5 km-wide and 60 km-long channel extending from the ice shelf's grounding zone to its calving front. If focused thinning continues at present rates, the channel will melt through, and the ice shelf collapse, within 40–50 years, almost two centuries before collapse is projected from the average thinning rate. Our findings provide evidence of basal melt-driven sub-ice shelf channel formation and its potential for accelerating the weakening of ice shelves.
-
Ice shelves in the Amundsen Sea Embayment have thinned, accelerating the seaward flow of ice sheets upstream over recent decades. This imbalance is caused by an increase in the ocean-driven melting of the ice shelves. Observations and models show that the ocean heat content reaching the ice shelves is sensitive to the depth of thermocline, which separates the cool, fresh surface waters from warm, salty waters. Yet the processes controlling the variability of thermocline depth remain poorly constrained. Here we quantify the oceanic conditions and ocean-driven melting of Cosgrove, Pine Island Glacier (PIG), Thwaites, Crosson, and Dotson ice shelves in the Amundsen Sea Embayment from 1991 to 2014 using a general circulation model. Ice-shelf melting is coupled to variability in the wind field and the sea-ice motions over the continental shelf break and associated onshore advection of warm waters in deep troughs. The layer of warm, salty waters at the calving front of PIG and Thwaites is thicker in austral spring (June–October) than in austral summer (December–March), whereas the seasonal cycle at the calving front of Dotson is reversed. Furthermore, the ocean-driven melting in PIG is enhanced by an asymmetric response to changes in ocean heat transport anomalies at the continental shelf break: melting responds more rapidly to increases in ocean heat transport than to decreases. This asymmetry is caused by the inland deepening of bathymetry and the glacial meltwater circulation around the ice shelf.
-
Ice discharge from the Antarctic Ice Sheet directly impacts global sea level, making ice sheet dynamics a central topic in antarctic research. Glaciologists are studying a poorly understood but potentially important phenomenon that looks like a little hill of ice. They call these hills “ice rises”.
-
The increasing contribution of the Antarctic Ice Sheet to sea level rise is linked to reductions in ice shelf buttressing, driven in large part by basal melting of ice shelves. These ocean-driven buttressing losses are being compounded as ice shelves weaken and fracture. To date, model projections of ice sheet evolution have not accounted for weakening ice shelves. Here we present the first constitutive framework for ice deformation that explicitly includes mechanical weakening, based on observations of the progressive degradation of the remnant Larsen B Ice Shelf from 2000 to 2015. We implement this framework in an ice sheet model and are able to reproduce most of the observed weakening of the ice shelf. In addition to predicting ice shelf weakening and reduced buttressing, this new framework opens the door for improved understanding and predictions of iceberg calving, meltwater routing and hydrofracture, and ice shelf collapse.
-
Ice shelves around Antarctica are vulnerable to an increase in ocean-driven melting, with the melt rate depending on ocean temperature and the strength of flow inside the ice-shelf cavities. We present measurements of velocity, temperature, salinity, turbulent kinetic energy dissipation rate, and thermal variance dissipation rate beneath Pine Island Glacier ice shelf, West Antarctica. These measurements were obtained by CTD, ADCP, and turbulence sensors mounted on an Autonomous Underwater Vehicle (AUV). The highest turbulent kinetic energy dissipation rate is found near the grounding line. The thermal variance dissipation rate increases closer to the ice-shelf base, with a maximum value found ∼0.5 m away from the ice. The measurements of turbulent kinetic energy dissipation rate near the ice are used to estimate basal melting of the ice shelf. The dissipation-rate-based melt rate estimates is sensitive to the stability correction parameter in the linear approximation of universal function of the Monin-Obukhov similarity theory for stratified boundary layers. We argue that our estimates of basal melting from dissipation rates are within a range of previous estimates of basal melting.
-
We present implementations of vibroseis system configurations with a snowstreamer for over-ice long-distance seismic traverses (>100 km). The configurations have been evaluated in Antarctica on ice sheet and ice shelf areas in the period 2010–2014. We discuss results of two different vibroseis sources: Failing Y-1100 on skis with a peak force of 120 kN in the frequency range 10–110 Hz; IVI EnviroVibe with a nominal peak force of 66 kN in the nominal frequency range 10–300 Hz. All measurements used a well-established 60 channel 1.5 km snowstreamer for the recording. Employed forces during sweeps were limited to less than 80% of the peak force. Maximum sweep frequencies, with a typical duration of 10 s, were 100 and 250 Hz for the Failing and EnviroVibe, respectively. Three different concepts for source movement were employed: the Failing vibrator was mounted with wheels on skis and pulled by a Pistenbully snow tractor. The EnviroVibe was operated self-propelled on Mattracks on the Antarctic plateau. This lead to difficulties in soft snow. For later implementations the EnviroVibe with tracks was put on a polyethylene (PE) sled. The sled had a hole in the center to lower the vibrator baseplate directly onto the snow surface. With the latter setup, data production varied between 20 km/day for 6-fold and 40 km/day for single fold for 9 h/day of measurements. The combination of tracks with the PE-sled was especially advantageous on hard and rough surfaces because of the flexibility of each component and the relatively lose mounting. The systems presented here are suitable to obtain data of subglacial and sub-seabed sediment layers and englacial layering in comparable quality as obtained from marine geophysics and land-based explosive surveys. The large offset aperture of the streamer overcomes limitations of radar systems for imaging of steep along-track subglacial topography. With joint international scientific and logistic efforts, large-scale mapping of Antarctica's and Greenland's subglacial geology, ice-shelf cavity geometries and sea-bed strata, as well as englacial structures can be achieved.
-
The climate-driven collapses of the Larsen A and B ice shelves have opened up new regions of the coastal Antarctic to the influence of sea ice resulting in increases in seasonal primary production. In this study, passive microwave remote sensing of sea ice concentration and satellite imagery of ocean color are employed to quantify the magnitude of and variability in open water area and net primary productivity (NPP) in the Larsen embayments between 1997 and 2011. Numerical model output provides context to analyze atmospheric forcing on the coastal ocean. Following ice shelf disintegration the embayments function as coastal, sensible heat polynyas. The Larsen A and B are as productive as other Antarctic shelf regions, with seasonally averaged daily NPP rates reaching 1232 and 1127 mg C m−2 d−1 and annual rates reaching 200 and 184 g C m−2 yr−1, respectively. A persistent cross-shelf gradient in NPP is present with higher productivity rates offshore, contrasting with patterns observed along the West Antarctic Peninsula. Embayment productivity is intimately tied to sea ice dynamics, with large interannual variability in NPP rates driven by open water area and the timing of embayment opening. Opening of the embayment is linked to periods of positive Southern Annular Mode and stronger westerlies, which lead to the vertical deflection of warm, maritime air over the peninsula and down the leeward side causing increases in surface air temperature and wind velocity. High productivity in these new polynyas is likely to have ramifications for organic matter export and marine ecosystem evolution.
-
I klimatsammanhang har strålkastarljuset länge varit riktade mot de känsliga polarområdena och smältande is. Bilder på isbjörnar som klamrar sig fast vid ett ensamt isflak figurerar varje höst i media när årets – ofta rekordlåga – minimum i utbredning av Arktisk havsis offentliggörs. Men nyligen har is-överskrifterna allt oftare kommit söderifrån, de har handlat om Antarktis, om shelf-is som smälter, om en stigande havsnivå och om möjligheten för att inlandsisen i Väst-Antarktis ska kollapsa.
Explore
Topic
- isshelf
- Amundsenhavet (2)
- Antarktis (9)
- batymetri (4)
- biogeokjemi (1)
- biologi (1)
- biomasse (1)
- biosfære (1)
- brehylle (11)
- bunnvann (3)
- deglasiasjon (1)
- Dronning Maud Land (10)
- fjernmåling (1)
- forskning (1)
- fysikk (1)
- fysisk oseanografi (2)
- fytoplankton (2)
- geofysikk (5)
- geologi (2)
- geomorfologi (1)
- glasiologi (21)
- global oppvarming (1)
- havis (4)
- havnivå (1)
- havnivåstigning (6)
- havstrømmer (2)
- hydrografi (3)
- innlandsis (12)
- is (2)
- isberg (1)
- isbre (1)
- isbrem (21)
- isfjell (1)
- isfront (2)
- ismeltvann (1)
- kalv (2)
- kalving (2)
- kjemi (1)
- klima (4)
- klimaendringer (6)
- klimatologi (3)
- kontinentalmargin (1)
- kontinentalsokkel (6)
- kontinentalsokler (3)
- logistikk (1)
- målinger (1)
- marin biologi (1)
- marin geologi (1)
- meteorologi (1)
- observasjoner (1)
- oseanografi (20)
- overflatevann (1)
- polynja (2)
- satellite altimetri (1)
- satellite bilder (2)
- satellite mikrobølgesensorer (1)
- seismologi (2)
- sjøis (3)
- sjøvann (2)
- sjøvirvler (1)
- smeltevann (1)
- smelting (7)
- Sørishavet (32)
- stabile isotoper (1)
- subglasial biodiversitet (1)
- subglasial innsjø (1)
- teknologi (1)
- tidevann (1)
- understrømmer (1)
- vannmasser (4)
- vannvirvler (3)
- Weddellhavet (14)
Resource type
- Journal Article (41)
- Report (1)
- Thesis (1)