Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 15 resources
-
Interactions between the Southern Ocean and the Weddell Sea ice shelves are important both to the Antarctic Ice Sheet and to the production of globally significant water masses. Here we review the interaction between the Filchner-Ronne Ice Shelf and the shelf sea in which it floats. The continental shelf processes leading to the production of Weddell Sea deep and bottom waters from the original off-shelf source waters are discussed, and a new view is offered of the initial production of High-Salinity Shelf Water. Data from ship-based measurements at the ice front, from glaciological methods, and from measurements made within the sub–ice shelf cavity itself are used to describe the pattern of flows beneath the ice shelf. We also consider the variability observed within the cavity from tidal to interannual time scales and finish with a discussion of future research priorities in the region.
-
Model simulations of circulation and melting beneath Fimbulisen, Antarctica, obtained using an isopycnic coordinate ocean model, are presented. Model results compare well with available observations of currents and hydrography in the open ocean to the north of Fimbulisen and suggest that Warm Deep Water exists above the level of a sub-ice-shelf bedrock sill, the principal pathway for warm waters to enter the sub-ice-shelf cavity. The model shows a southward inflow of Warm Deep Water over this sill and into the cavity, producing a mean cavity temperature close to −1.0°C. This leads to high levels of basal melting (>10 m/a) at the grounding line of Jutulstraumen and an average melting over the ice shelf base close to 1.9 m/a. The southward inflow is a compensating flow caused by the northward outflow of fresh, cold water produced by the basal melting. Results on inflow and melting are difficult to validate since no in situ measurements yet exist in the cavity. If such high melt rates are realistic, the mass balance of Fimbulisen must be significantly negative, and the ice shelves along Dronning Maud Land must contribute about 4.4 mSv of melt water to the Weddell Sea, about 15% of the total Antarctic meltwater input to the Southern Ocean.
-
Cold shelf waters flowing out of the Filchner Depression in the southern Weddell Sea make a significant contribution to the production of Weddell Sea Bottom Water (WSBW), a precursor to Antarctic Bottom Water (AABW). We use all available current meter records from the region to calculate the flux of cold water (<−1.9°C) over the sill at the northern end of the Filchner Depression (1.6 ± 0.5 Sv), and to determine its fate. The estimated fluxes and mixing rates imply a rate of WSBW formation (referenced to −0.8°C) of 4.3 ± 1.4 Sv. We identify three pathways for the cold shelf waters to enter the deep Weddell Sea circulation. One path involves flow constrained to follow the shelf break. The other two paths are down the continental slope, resulting from the cold dense water being steered northward by prominent ridges that cross the continental slope near 36°W and 37°W. Mooring data indicate that the deep plumes can retain their core characteristics to depths greater than 2000 m. Probably aided by thermobaricity, the plume water at this depth can flow at a speed approaching 1 m s−1, implying that the flow is occasionally supercritical. We postulate that such supercriticality acts to limit mixing between the plume and its environment. The transition from supercritical to slower, more uniform flow is associated with very efficient mixing, probably as a result of hydraulic jumps.
-
We present oceanographic data from beneath the northern Ronne Ice Shelf. The data were collected during the austral summer of 2002–2003 from four sites located near the ice front in the Ronne Depression. They consist of conductivity-temperature-depth (CTD) profiles and time series from moored instruments that vary in length from 9 to 20 weeks. A strong, tidally modulated inflow of relatively fresh water was found at the eastern margin of the Ronne Depression. This low-density inflow powers high basal melt rates that are responsible for a substantially thinned area of ice shelf. A northward flow of Ice Shelf Water along the western margin of the depression (the Antarctic Peninsula coast) was inferred from the CTD data. From the new CTD and current meter data, and from published results from cruises along the ice front, we suggest that the flows at the margins of the Ronne Depression establish east-west density gradients that drive an anticyclonic circulation within the depression. The barotropic component of the circulation forms a gyre of strength 5 × 105 m3 s−1 and occupies a bowl in the field of water column thickness in the northern portion of the depression. All water masses sampled had temperatures below the surface freezing point and are therefore classified as Ice Shelf Water. The relatively complex nature of the oceanographic regime in the Ronne Depression is overlain by a seasonal variability that is hinted at by the available time series, probably explaining the apparent absence of inflowing HSSW at the time of the measurements.
-
This paper presents results from seismic measurements of the ice and water column thickness of the Fimbul Ice Shelf in the northeastern Weddell Sea. Seismic reflection measurements were conducted at 183 stations covering most of the ice shelf. Seismic velocities in the ice were derived from refraction measurements at 12 stations, distributed evenly across the area, as well as from temperature and density data from the Fimbul Ice Shelf. Velocities in the water were derived from temperature and salinity data from beneath the Fimbul Ice Shelf. Ice thicknesses were found to vary between 160 m and 550 m with uncertainties up to ±10 m. Water column thicknesses up to 900 m were found within the central ice shelf cavity, and values exceed 2000 m where the ice shelf overhangs the continental slope. Uncertainties in water column thickness are estimated to be ±60 m, and are dominated by the uncertainties in the shape of the seabed. Ice draft and seabed elevation was derived from ice and water column thickness assuming hydrostatic pressure. The resulting map of seabed elevation and water column thickness suggests that the strong westward flowing coastal current will be steered under the ice shelf and thus drive a sub-ice-shelf flow. Warm Deep Water does not have direct access to the ice shelf cavity, while relatively cold coastal waters shallower than 500 m will interact closely with the Fimbul Ice Shelf.
-
We use new data from the southern Weddell Sea continental shelf to describe water mass conversion processes in a formation region for cold and dense precursors of Antarctic Bottom Water. The cruises took place in early 1995, 1998, and 1999, and the time series obtained from moored instruments were up to 30 months in length, starting in 1995. We obtained new bathymetric data that greatly improve our definition of the Ronne Depression, which is now shown to be limited to the southwestern continental shelf and so cannot act as a conduit to northward flow from Ronne Ice Front. Large-scale intrusions of Modified Warm Deep Water (MWDW) onto the continental shelf occur along much of the shelf break, although there is only one location where the MWDW extends as far south as Ronne Ice Front. High-Salinity Shelf Water (HSSW) produced during the winter months dominates the continental shelf in the west. During summer, Ice Shelf Water (ISW) exits the subice cavity on the eastern side of the Ronne Depression, flows northwest along the ice front, and reenters the cavity at the ice front's western limit. During winter the ISW is not observed in the Ronne Depression north of the ice front. The flow of HSSW into the subice cavity via the Ronne Depression is estimated to be 0.9 ± 0.3 Sv. When combined with inflows along the remainder of Ronne Ice Front (reported elsewhere), sufficient heat is transported beneath the ice shelf to power an average basal melt rate of 0.34 ± 0.1 m yr−1.
-
In this study laboratory experiments of sea ice formed on a vertical surface with initial temperature of −30 to −50°C are presented. The ice formation is rapid, and in 300 s >5 mm of sea ice is formed. Ice formation cooled and salinified the water, and induced a vertical down wards flow of ∼5 mm/s with a boundary layer about 5 mm thick. This ice has a structure with columnar crystals that have small circular cross sections (0.2–1.0 mm) and sea ice salinities are between 24 and 32. A simple model approach indicate that the thermal conductivity of such ice is lower than for other types of sea ice.
-
We present evidence for the absence of the George VI Ice Shelf during a brief period in the mid-Holocene and during one or more earlier interstadials or interglacials. Barnacle Bathylasma corolliforme shells sampled from ice shelf moraines at Two Step Cliffs on Alexander Island have been dated to c, 5750–6000 14C yr BP(c. 6550–6850 cal yr BP) and imply seasonally open water in the George VI Sound during this period. Other shells are beyond the range of radiocarbon dating and imply open water during one or more previous interglacial or interstadial period, prior to 40 000 14C yr BP. Our results show that the ongoing collapse of some Antarctic Peninsula ice shelves is not unprecedented.
-
We present the first year-long current meter records ever obtained near the floating Filchner-Ronne Ice Shelf in the Weddell Sea. The currents are steered along the ice front, but in the lower layer where the bottom topography is descending toward the west the current has a component toward the ice front of about 3 cm s−1. During winter the temperature stayed near the surface freezing point, while the salinity increased, indicating that ice was formed and brine released. The seasonal variation in salinity was 0.15±0.05 psu, corresponding to the formation of 1–2 m of ice on a shelf depth of 400 m. The transport of High-Salinity Shelf Water (HSSW) into the ice shelf cavity was found to be of the order 0.5×106 m3 s−1. The production of this water due to oscillating tides and off shelf winds was found to be of the same order of magnitude. In contact with glacial ice at great depths, and because of the depression of the freezing point, the HSSW is transformed to Ice Shelf Water (ISW) by cooling and melting processes. The melting rate was estimated to 1×1011 ton yr−1. This corresponds to the melting of 0.2 m ice per year if the melting is evenly distributed over the Filchner-Ronne Ice Shelf. If the melting is concentrated along a path from the Berkner Shelf around the Berkner Island to the Filchner Depression, then melting rates up to 7 m yr−1 must be expected. A comparison of HSSW characteristics in the Ronne Depression, our winter observations on the Berkner Shelf, and the ISW flowing out of the Filchner Depression indicates that very little water passes through the cavity from the Ronne to the Filchner Depression. It appears that most of the ISW originating from processes on the Berkner Shelf escapes the cavity in the Filchner Depression. This leaves the Berkner Shelf as the important source of ISW and subsequently of the Weddell Sea Bottom Water formed from ISW.
-
A light, mining drill rig deployed from the stern of a research vessel has been used to carry out shallow drilling in 212 m water depth on the continental shelf in the eastern Weddell Sea. Penetration was 15 m below the seabed with 18% recovery in the 31 hours available for the experiment. The recovered glacigenic sediments are predominantly volcanic material of basaltic and andesitic composition with petrological characteristics and age similar to the continental flood basalts exposed in Vestfjella, about 130 km upstream from the drill site. The sediments include a reworked marine Miocene diatom flora. The material documents oscillations of the East Antarctic Ice Sheet over the past 30 ka. The lowermost diamicton probably represents a deformation till, and the grounding line retreated past the drill site 30 km from the shelf edge about 30 kyr BP. A readvance occurred during the Late Wisconsin Glacial Maximum. Assuming a reservoir correction of 1300 yr, marine conditions existed at the site between 10.1-7 kyr BP, and later at least between 2.8 and 2.5 kyr BP. The stratigraphy at the site has been disturbed by iceberg ploughing and/or contact between the ice shelf and the sea floor during local advances after 2.5 kyr BP.
Explore
Topic
- isshelf
- AABW (2)
- Antarktis (9)
- Dronning Maud Land (3)
- geofysikk (5)
- geokjemi (1)
- geologi (1)
- geomorfologi (1)
- glasiologi (8)
- havbunnen (3)
- havis (1)
- havstrømmer (4)
- holocene (1)
- hydrografi (1)
- innlandsis (3)
- isbreer (1)
- isfront (3)
- kontinentalsokkel (3)
- laboratorieeksperimenter (1)
- NARE 2000/01 (1)
- oseanografi (8)
- polarområdene (1)
- sjøis (1)
- Sørishavet (8)
- stratigrafi (1)
- tidevannsstrømmer (1)
- topografi (1)
- vannmasser (2)
- Weddellhavet (8)
Resource type
- Book Section (1)
- Journal Article (14)