Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 13 resources
-
In the region of the Schirmacheroase (71 °S, 12°E) various geodetic and glaciological research activities have been carried out in the last decade. Several times three geodetic-glaciological traverses were undertaken to study ice velocity, accumulation and ablation, and ice surface height changes. Repeated ground surveys show a significant decrease in surface heights by about 15 cm/y for a large blue-ice area. This paper presents the first interferometrically derived ice velocity field of the inland ice close to the Schirmacheroase. The interferometric analysis of the synthetic aperture radar (SAR) data is performed in combination with ground-based information. Since only ERS-1&2 tandem mission image couples are available for this region a digital elevation model (DEM) is used to remove the effect of topography. Ice velocities up to 100 m/y are proved interferometrically for this part of the inland ice.
-
This paper discusses predicted evolution patterns of present-day changes of ice thickness, surface elevation, and bedrock elevation over the Greenland and Antarctic continents. These were obtained from calculations with dynamic 3-D ice sheet models which were coupled to a visco-elastic solid Earth model. The experiments were initialized over the last two glacial cycles and subsequently averaged over the last 200 years to obtain the current evolution. The calculations indicate that the Antarctic Ice Sheet is still adjusting to the last glacial-interglacial transition yielding a decreasing ice volume and a rising bedrock elevation of the order of several centimetres per year. The Greenland Ice Sheet was found to be close to a stationary state with a mean thickness change of only a few millimetres per year, but the calculations revealed large spatial differences. Predicted patterns over Greenland are characterized by a small thickening over the ice sheet interior and a general thinning of the ablation area. In Antarctica, almost all of the predicted changes are concentrated in the West Antarctic Ice Sheet, which is still retreating at both the Weddell and Ross Sea margins. Over most of both ice sheets, the model indicates that the surface elevation trend is dominated by ice thickness changes rather than by bedrock elevation changes.
-
The Holocene glacial and climatic development in Antarctica differed considerably from that in the Northern Hemisphere. Initial deglaciation of inner shelf and adjacent land areas in Antarctica dates back to between 10-8 Kya, when most Northern Hemisphere ice sheets had already disappeared or diminished considerably. The continued deglaciation of currently ice-free land in Antarctica occurred gradually between ca. 8-5 Kya. A large southern portion of the marine-based Ross Ice Sheet disintegrated during this late deglaciation phase. Some currently ice-free areas were deglaciated as late as 3 Kya. Between 8-5 Kya, global glacio-eustatically driven sea level rose by 10-17m, with 4-8 m of this increase occurring after 7 Kya. Since the Northern Hemisphere ice sheets had practically disappeared by 8-7 Kya, we suggest that Antarctic deglaciation caused a considerable part of the global sea level rise between 8-7 Kya, and most of it between 7-5 Kya. The global mid-Holocene sea level high stand, broadly dated to between 8-4 Kya, and the Littorina-Tapes transgressions in Scandinavia and simultaneous transgressions recorded from sites e.g. in Svalbard and Greenland, dated to 7-5 Kya, probably reflect input of meltwater from the Antarctic deglaciation.
-
In the near coastal regions of Dronning Maud Land, Antarctica, below-surface ice-melt in blue-ice areas has been observed. The low scattering coefficients of the large-grained blue-ice allow penetration of solar radiation, thus providing an energy source below the ice surface. The sub-surface meltwater is significant enough to show up on remote-sensing imagery in the form of ice-covered lakes. Adjacent snow-accumulation areas have much higher scattering coefficients and consequently limit solar radiation penetration in these regions. These snow and ice surfaces are generally below freezing, and little surface melting occurs. To assess the response of these melt features to changes in atmospheric forcings such as cloudiness, air temperature, and snow accumulation, a physically-based model of the coupled atmosphere, radiation, snow, and blue-ice system has been developed. The model consists of a heat transfer equation with a spectrally-dependent solar-radiation source term. The penetration of radiation into the snow and blue-ice depends on the surface albedo, and the snow and blue-ice grain size and density. Model simulations show that ice melt occurring in this area is sensitive to potential variations in atmospheric forcing. Under certain conditions more traditional surface melting occurs and, under other conditions, the existing melt processes can be shut down completely. In light of the sensitivity of this system to variations in atmospheric forcing, and the ability to view melt-related features using remote sensing, a tool exists to efficiently monitor variations in Antarctic coastal climate.
-
In the Jutulgryta area of Dronning Maud Land, Antarctica, subsurface melting of the ice sheet has been observed. The melting takes place during the summer months in blue-ice areas under conditions of below-freezing air and surface temperatures. Adjacent snow-covered regions, having the same meteorological and climatic conditions, experience little or no subsurface melting. To help explain and understand the observed melt-rate differences in the blue-ice and snow-covered areas, a physically based numerical model of the coupled atmosphere, radiation, snow and blue-ice system has been developed. The model comprises a heat-transfer equation which includes a spectrally dependent solar-radiation source term. The penetration of radiation into the snow and blue ice depends on the solar-radiation spectrum, the surface albedo and the snow and blue-ice grain-sizes and densities. In addition, the model uses a complete surface energy balance to define the surface boundary conditions. It is run over the full annual cycle, simulating temperature profiles and melting and freezing quantities throughout the summer and winter seasons. The model is driven and validated using field observations collected during the Norwegian Antarctic Research Expedition (NARE) 1996–97. The simulations suggest that the observed differences between subsurface snow and blue-ice melting can be explained largely by radiative and heat-transfer interactions resulting from differences in albedo, grain-size and density between the two mediums.
-
Stresses and velocities at depth are calculated across Jutulstraumen, an ice stream in Dronning Maud Land, draining about 1% of the Antarctic ice sheet. The force-balance study is based on data from kinematic GPS measurements on three strain nets, each consisting of 3 × 3 stakes. The maximum measured velocity is 443 m a−1 and the velocity variation over short distances is large compared with studied ice streams in West Antarctica. The surface topography together with the measured velocities across the profile indicate that the bottom topography has a great influence on the flow direction, even where the ice thickness is more than 2000 m. The basal shear stresses are calculated as 180, 227 and 146 kPa in the three Strain nets, while the corresponding driving stresses are 180, 122 and 111 kPa (±5%). The heat produced by sliding and internal deformation is sufficient to keep the base at the pressure-melting point. The annual basal melting is estimated to be about 60 mm. Investigations on the effect of temperature softening show that the flow parameter’s influence on the effective strain rate is more important than the flow parameter’s direct softening in the flow low alone. The mass flow calculated by the force-balance method is between 87 and 96% of pure plug flow and total discharge is calculated to be 13.3 ± 10 km3a-1.
Explore
Topic
- innlandsis
- akkumulasjon (2)
- Antarktis (5)
- blåis (2)
- Dronning Maud Land (7)
- geodesi (2)
- geofysikk (1)
- geologi (2)
- geomorfologi (1)
- glasiologi (10)
- havnivåstigning (1)
- is radar (1)
- isbre (1)
- isshelf (1)
- isstrøm (1)
- klimaendringer (2)
- meteorologi (1)
- NARE 1992/93 (2)
- NARE 1996/97 (3)
- NARE 1997/98 (2)
- oseanografi (1)
- paleoglasiologi (1)
- polarområdene (2)
- sedimentologi (1)
- smelting (1)
- snø radar (1)
- Sørishavet (1)
- subglasial innsjø (1)
- topografi (2)
- vannmasser (1)
- Weddellhavet (1)
Resource type
- Book Section (5)
- Journal Article (8)