Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 6 resources
-
Tabular iceberg calving and ice shelf retreat occurs after full-thickness fractures, known as rifts, propagate across an ice shelf. A quickly evolving rift signals a threat to the stability of Larsen C, the Antarctic Peninsula's largest ice shelf. Here we reveal the influence of ice shelf heterogeneity on the growth of this rift, with implications that challenge existing notions of ice shelf stability. Most of the rift extension has occurred in bursts after overcoming the resistance of suture zones that bind together neighboring glacier inflows. We model the stresses in the ice shelf to determine potential rift trajectories. Calving perturbations to ice flow will likely reach the grounding line. The stability of Larsen C may hinge on a single suture zone that stabilizes numerous upstream rifts. Elevated fracture toughness of suture zones may be the most important property that allows ice shelves to modulate Antarctica's contribution to sea level rise.
-
Long-range airborne geophysical measurements were carried out in the ICEGRAV campaigns, covering hitherto unexplored parts of interior East Antarctica and part of the Antarctic Peninsula. The airborne surveys provided a regional coverage of gravity, magnetic and icepenetrating radar measurements for major Dronning Maud Land ice stream systems, from the grounding lines up to the Recovery Lakes drainage basin, and filled in major data voids in Antarctic data compilations, such as AntGP for gravity data, ADMAP for magnetic data and BEDMAP2 for ice thickness data and the sub-ice topography. We present the first maps of gravity, magnetic and ice thickness data and bedrock topography for the region and show examples of bedrock topography and basal reflectivity patterns. The 2013 Recovery Lakes campaign was carried out with a British Antarctic Survey Twin Otter aircraft operating from the Halley and Belgrano II stations, as well as a remote field camp located at the Recovery subglacial Lake B site. Gravity measurements were the primary driver for the survey, with two airborne gravimeters (Lacoste and Romberg and Chekan-AM) providing measurements at an accuracy level of around 2 mGal r.m.s., supplementing GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) satellite data and confirming an excellent sub-milligal agreement between satellite and airborne data at longer wavelengths.
-
The ice-shelf-fringed coast of Dronning Maud Land in East Antarctica contains numerous ice rises that influence the dynamics and mass balance of the region. However, only a few of these ice rises have been investigated in detail. Here, we present field measurements of Blåskimen Island, an isle-type ice rise adjacent to Fimbul Ice Shelf. This ice rise is largely dome shaped, with a pronounced ridge extending to the south-west from its summit (410 m a.s.l.). Its bed is mostly flat and about 100 m below the current sea level. Shallow radar-detected isochrones dated with a firn core reveal that the surface mass balance is higher on the south-eastern (upwind) slope than on the north-western (downwind) slope by ∼ 37 %, and this pattern has persisted for at least the past decade. Moreover, arches in radar stratigraphy suggest that the summit of the ice rise has been stable for ∼ 600 years. Ensemble estimates of the mass balance using the input–output method show that this ice rise has thickened by 0.12–0.37 m ice equivalent per year over the past decade.
-
Ice shelves play a vital role in regulating loss of grounded ice and in supplying freshwater to coastal seas. However, melt variability within ice shelves is poorly constrained and may be instrumental in driving ice shelf imbalance and collapse. High-resolution altimetry measurements from 2010 to 2016 show that Dotson Ice Shelf (DIS), West Antarctica, thins in response to basal melting focused along a single 5 km-wide and 60 km-long channel extending from the ice shelf's grounding zone to its calving front. If focused thinning continues at present rates, the channel will melt through, and the ice shelf collapse, within 40–50 years, almost two centuries before collapse is projected from the average thinning rate. Our findings provide evidence of basal melt-driven sub-ice shelf channel formation and its potential for accelerating the weakening of ice shelves.
-
Ice shelves in the Amundsen Sea Embayment have thinned, accelerating the seaward flow of ice sheets upstream over recent decades. This imbalance is caused by an increase in the ocean-driven melting of the ice shelves. Observations and models show that the ocean heat content reaching the ice shelves is sensitive to the depth of thermocline, which separates the cool, fresh surface waters from warm, salty waters. Yet the processes controlling the variability of thermocline depth remain poorly constrained. Here we quantify the oceanic conditions and ocean-driven melting of Cosgrove, Pine Island Glacier (PIG), Thwaites, Crosson, and Dotson ice shelves in the Amundsen Sea Embayment from 1991 to 2014 using a general circulation model. Ice-shelf melting is coupled to variability in the wind field and the sea-ice motions over the continental shelf break and associated onshore advection of warm waters in deep troughs. The layer of warm, salty waters at the calving front of PIG and Thwaites is thicker in austral spring (June–October) than in austral summer (December–March), whereas the seasonal cycle at the calving front of Dotson is reversed. Furthermore, the ocean-driven melting in PIG is enhanced by an asymmetric response to changes in ocean heat transport anomalies at the continental shelf break: melting responds more rapidly to increases in ocean heat transport than to decreases. This asymmetry is caused by the inland deepening of bathymetry and the glacial meltwater circulation around the ice shelf.
-
Ice discharge from the Antarctic Ice Sheet directly impacts global sea level, making ice sheet dynamics a central topic in antarctic research. Glaciologists are studying a poorly understood but potentially important phenomenon that looks like a little hill of ice. They call these hills “ice rises”.
Explore
Topic
- glasiologi
- Amundsenhavet (1)
- Antarktis (2)
- batymetri (1)
- brehylle (1)
- Dronning Maud Land (2)
- geofysikk (2)
- havnivå (1)
- havnivåstigning (2)
- innlandsis (2)
- is (1)
- isberg (1)
- isbrem (4)
- isfjell (1)
- ismeltvann (1)
- isshelf (5)
- kalv (1)
- kalving (1)
- klimatologi (1)
- oseanografi (1)
- smelting (1)
- Sørishavet (3)
Resource type
- Journal Article (6)