Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 58 resources
-
[1] Ground-based accumulation measurements are scarce on the high East Antarctic plateau, but highly necessary for model validation and the interpretation of satellite data for the determination of Antarctic mass balance. Here, we present accumulation results obtained from four shallow firn cores drilled in the Antarctic summer season 2007/2008. The cores were drilled along the first leg of the Norwegian-US IPY traverse through East Antarctica, visiting sites like Plateau Station and Pole of Relative Inaccessibility that have been covered by the South Pole Queen Maud Land Traverses (SPQMLT) in the 1960s. Accumulation has been determined from volcanic chronology established from the conductivity records measured by dielectric profiling (DEP). The Tambora 1815/unknown 1809 double peak is clearly visible in the conductivity data and serves as a reliable time marker. Accumulation rates averaged over the period 1815–2007 are in the range of 16 to 32 kg m−2 a−1, somewhat lower than expected from the SPQMLT data. The spatial pattern is mainly influenced by elevation and continentality. Three of the firn cores show a decrease of more than 20% in accumulation for the time period 1815–2007 in relation to accumulation rates during the period 1641–1815. The spatial representativity of the firn cores is assessed by ground-penetrating radar, showing a rather smoothly layered pattern around the drill sites. Validation of the DEP results is utilized by comparison with chemistry data, proving the validity of the DEP method for dating firn cores. The results help understanding the status of the East Antarctic ice sheet and will be important for e.g. future model-derived estimates of the mass balance of Antarctica.
-
Cryoconite holes form on ice due to enhanced ablation around particles deposited on the surface, and are present in the ablation area of glaciers worldwide. Here we investigate the use of Ground Penetrating Radar (GPR) as a non-destructive method to monitor and map cryoconite holes. We compare GPR data obtained from the Jutulsessen blue ice area in Dronning Maud Land, Antarctica, with modeled GPR data. The modeled GPR response to cryoconite holes is numerically calculated by solving Maxwell's equations with a 3D Finite-Difference Time-Domain (FDTD) scheme. The model includes a realistic shielded bowtie antenna and dimensions and constituent parameters of cryoconite holes excavated in the field. We have performed what-if scenarios with controlled variation of single parameters. We show that GPR can be used to determine the horizontal extent, depth and whether a cryoconite hole is frozen or contains liquid water, information unavailable from visual surface inspection. The cryoconite thickness can, for completely frozen holes, be determined to within a 1/4 of the GPR center frequency wavelength. The exact water content is not readily extractable because the GPR response is influenced by many other factors such as: cryoconite thickness, shape and roughness, as well as antenna ground coupling.
-
Interactions between the Southern Ocean and the Weddell Sea ice shelves are important both to the Antarctic Ice Sheet and to the production of globally significant water masses. Here we review the interaction between the Filchner-Ronne Ice Shelf and the shelf sea in which it floats. The continental shelf processes leading to the production of Weddell Sea deep and bottom waters from the original off-shelf source waters are discussed, and a new view is offered of the initial production of High-Salinity Shelf Water. Data from ship-based measurements at the ice front, from glaciological methods, and from measurements made within the sub–ice shelf cavity itself are used to describe the pattern of flows beneath the ice shelf. We also consider the variability observed within the cavity from tidal to interannual time scales and finish with a discussion of future research priorities in the region.
-
A large-scale force budget is a relatively simple but useful tool for initial investigation of ice dynamics; however, it requires an extensive data set. Identification of key measurement areas and assessment of the spatial variability of the required measurement accuracies is advantageous prior to measuring such large drainage basins. Identification of areas and assessment of data requires several steps and in the paper velocities and surface topography are modelled numerically for Jutulstraumen drainage basin, representing ~1% of the Antarctic ice sheet (124,000 km2). A preliminary large-scale force budget is calculated from the modelled results, and key areas are identified. Finally, the required measurement accuracies yielding 10% uncertainty of the estimated stresses are calculated through error propagation of the force budget equations. Based on the results it is recommended to prioritize more accurate measurements for determining the driving stresses for the entire basin, and the longitudinal stresses in the funnel area of Jutulstraumen. The required measurement accuracy varies strongly over the basin, limiting the effective use of remote sensed data for deriving stresses. Radar altimetry surface elevation data can be used on the lower half of the plateau, and InSAR velocity data on the lower parts of the plateau and down-glacier.
-
The East Antarctic Ice Sheet is the largest, highest, coldest, driest, and windiest ice sheet on Earth. Understanding of the surface mass balance (SMB) of Antarctica is necessary to determine the present state of the ice sheet, to make predictions of its potential contribution to sea level rise, and to determine its past history for paleoclimatic reconstructions. However, SMB values are poorly known because of logistic constraints in extreme polar environments, and they represent one of the biggest challenges of Antarctic science. Snow accumulation is the most important parameter for the SMB of ice sheets. SMB varies on a number of scales, from small-scale features (sastrugi) to ice-sheet-scale SMB patterns determined mainly by temperature, elevation, distance from the coast, and wind-driven processes. In situ measurements of SMB are performed at single points by stakes, ultrasonic sounders, snow pits, and firn and ice cores and laterally by continuous measurements using ground-penetrating radar. SMB for large regions can only be achieved practically by using remote sensing and/or numerical climate modeling. However, these techniques rely on ground truthing to improve the resolution and accuracy. The separation of spatial and temporal variations of SMB in transient regimes is necessary for accurate interpretation of ice core records. In this review we provide an overview of the various measurement techniques, related difficulties, and limitations of data interpretation; describe spatial characteristics of East Antarctic SMB and issues related to the spatial and temporal representativity of measurements; and provide recommendations on how to perform in situ measurements.
-
The snow surface roughness at centimetre and millimetre scales is an important parameter related to wind transport, snowdrifts, snowfall, snowmelt and snow grain size. Knowledge of the snow surface roughness is also of high interest for analyzing the signal from radar sensors such as SAR, altimeters and scatterometers. Unfortunately, this parameter has seldom been measured over snow surfaces. The techniques used to measure the roughness of other surfaces, such as agricultural or sand soils, are difficult to implement in polar regions because of the harsh climatic conditions. In this paper we develop a device based on a laser profiler coupled with a GPS receiver on board a snowmobile. This instrumentation was tested successfully in midre Lovénbreen, Svalbard, in April 2006. It allowed us to generate profiles of 3 km sections of the snow-covered glacier surface. Because of the motion of the snowmobile, the roughness signal is mixed with the snowmobile signal. We use a distance/frequency analysis (the empirical mode decomposition) to filter the signal. This method allows us to recover the snow surface structures of wavelengths between 4 and 50 cm with amplitudes of >1 mm. Finally, the roughness parameters of snow surfaces are retrieved. The snow surface roughness is found to be dependent on the scales of the observations. The retrieved RMS of the height distribution is found to vary between 0.5 and 9.2 mm, and the correlation length is found to be between 0.6 and 46 cm. This range of measurements is particularly well adapted to the analysis of GHz radar response on snow surfaces.
-
I fjor vinter skapte norske og amerikanske forskere og teknikere historie da de la ut på en tre måneders ekspedisjon til Sydpolen. Snart vender de tilbake for nye tre måneder. Fire store innsjøer under isen venter på å bli undersøkt.
-
As a result of intensive field activities carried out by several nations over the past 15 years, a set of accumulation measurements for western Dronning Maud Land, Antarctica, was collected, based on firn-core drilling and snow-pit sampling. This new information was supplemented by earlier data taken from the literature, resulting in 111 accumulation values. Using Geographical Information Systems software, a first region-wide mean annual snow-accumulation field was derived. In order to define suitable interpolation criteria, the accumulation records were analyzed with respect to their spatial autocorrelation and statistical properties. The resulting accumulation pattern resembles well- known characteristics such as a relatively wet coastal area with a sharp transition to the dry interior, but also reveals complex topographic effects. Furthermore, this work identifies new high-return shallowdrilling sites by uncovering areas of insufficient sampling density.
-
Precise knowledge of the phase relationship between climate changes in the two hemispheres is a key for understanding the Earth’s climate dynamics. For the last glacial period, ice core studies1,2 have revealed strong coupling of the largest millennial-scale warm events in Antarctica with the longest Dansgaard–Oeschger events in Greenland3,4,5 through the Atlantic meridional overturning circulation6,7,8. It has been unclear, however, whether the shorter Dansgaard–Oeschger events have counterparts in the shorter and less prominent Antarctic temperature variations, and whether these events are linked by the same mechanism. Here we present a glacial climate record derived from an ice core from Dronning Maud Land, Antarctica, which represents South Atlantic climate at a resolution comparable with the Greenland ice core records. After methane synchronization with an ice core from North Greenland9, the oxygen isotope record from the Dronning Maud Land ice core shows a one-to-one coupling between all Antarctic warm events and Greenland Dansgaard–Oeschger events by the bipolar seesaw6. The amplitude of the Antarctic warm events is found to be linearly dependent on the duration of the concurrent stadial in the North, suggesting that they all result from a similar reduction in the meridional overturning circulation.
Explore
Topic
- glasiologi
- AABW (1)
- akkumulasjon (3)
- Antarktis (28)
- Antarktistraktaten 1959 (1)
- atmosfæren (1)
- biologi (1)
- blåis (2)
- Den norske antarktisekspedisjonen 1956–1960 (1)
- Det internasjonale geofysiske år 1957/58 (1)
- Dronning Maud Land (26)
- ekspedisjoner (4)
- fjernanalyse (1)
- fjernmåling (2)
- forskning (3)
- fysisk geografi (1)
- geodesi (1)
- geofysikk (10)
- geografi (2)
- geokjemi (1)
- geologi (5)
- geomorfologi (1)
- georadar (1)
- geovitenskap (3)
- glasiokjemi (1)
- havbunnen (2)
- havis (8)
- havnivåstigning (1)
- holocene (1)
- hydrografi (1)
- hydrokjemi (1)
- IGY 1957-58 (1)
- innlandsis (7)
- is radar (1)
- isbreer (2)
- isfront (1)
- iskjerner (10)
- isshelf (8)
- isstrøm (3)
- jordmagnetiske målinger (1)
- kartlegging (1)
- kjemi (1)
- klima (4)
- klimaendringer (2)
- klimamodeller (1)
- klimatologi (7)
- konferanser (1)
- kontinentalsokkel (2)
- laboratorieeksperimenter (1)
- logistikk (1)
- marin biologi (1)
- marin geologi (2)
- maringeologi (1)
- meteorologi (5)
- miljøvern (1)
- modellering (1)
- NARE 2000/01 (3)
- naturressurser (1)
- NAX (1)
- numerisk modellering (1)
- nunataker (2)
- oseanografi (3)
- overvintring (1)
- paleoglasiologi (1)
- paleoklimatologi (7)
- polarområdene (1)
- radioaktivitet (1)
- satellite bilder (2)
- satellittbilder (1)
- sedimentologi (1)
- sjøis (1)
- snø (1)
- snø radar (1)
- Sørishavet (13)
- stratigrafi (2)
- Sydpolen (1)
- teknologi (3)
- tidevannsmålinger (1)
- tidsserieanalyse (1)
- topografi (3)
- transantarktiske ekspedisjoner (2)
- vannmasser (1)
- vulkaner (1)
- Weddellhavet (3)
Resource type
- Book (2)
- Book Section (4)
- Document (1)
- Journal Article (49)
- Manuscript (1)
- Thesis (1)