Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 164 resources
-
In the region of the Schirmacheroase (71 °S, 12°E) various geodetic and glaciological research activities have been carried out in the last decade. Several times three geodetic-glaciological traverses were undertaken to study ice velocity, accumulation and ablation, and ice surface height changes. Repeated ground surveys show a significant decrease in surface heights by about 15 cm/y for a large blue-ice area. This paper presents the first interferometrically derived ice velocity field of the inland ice close to the Schirmacheroase. The interferometric analysis of the synthetic aperture radar (SAR) data is performed in combination with ground-based information. Since only ERS-1&2 tandem mission image couples are available for this region a digital elevation model (DEM) is used to remove the effect of topography. Ice velocities up to 100 m/y are proved interferometrically for this part of the inland ice.
-
As part of the pre-site survey in Dronning Maud Land for the European Project for Ice Goring in Antarctica (EPICA), the spatial variability of snow-layer thickness and snow chemistry was studied at two geographically different ice-core drill sites. The study aimed to quantify error bars on accumulation rates derived from firn and ice cores. One site is located on the polar plateau at Amundsenisen (76° S, 8° W) and the other in the coastal area at Maudheimvidda (73° S, 13° W). Medium-deep ice cores (100 m) and shallow firn cores (10-20 m) were drilled and snow pits (0.5-2 5 m) were dug at each site. At Amundsenisen a large (16 m x 6 m x 2.5 m deep) snow pit was dug. Snow structure in this large snow pit was mapped using optical surveying equipment, and photographically documented. Samples for analysis of nine ions and oxygen isotopes were collected along one depth profile. Density and in situ electrical conductivity measurements were made along three depth profiles! Snow-layer variability was studied in two different areas and at two different scales. At a regional scale, measured by snow-radar soundings, the variability was 8% on the polar plateau and 45% in the coastal area. The variability at a micro-scale in the large snow pit was 9%. The results indicate that ice cores from the polar plateau are more representative for a larger area than ice cores drilled in the coastal area There is no doubt that there are significant error bars on high-resolution accumulation data received from firn and ice cores, especially from the coastal area, but averaging over tens of years reduces the error in accumulation estimates.
-
This paper discusses predicted evolution patterns of present-day changes of ice thickness, surface elevation, and bedrock elevation over the Greenland and Antarctic continents. These were obtained from calculations with dynamic 3-D ice sheet models which were coupled to a visco-elastic solid Earth model. The experiments were initialized over the last two glacial cycles and subsequently averaged over the last 200 years to obtain the current evolution. The calculations indicate that the Antarctic Ice Sheet is still adjusting to the last glacial-interglacial transition yielding a decreasing ice volume and a rising bedrock elevation of the order of several centimetres per year. The Greenland Ice Sheet was found to be close to a stationary state with a mean thickness change of only a few millimetres per year, but the calculations revealed large spatial differences. Predicted patterns over Greenland are characterized by a small thickening over the ice sheet interior and a general thinning of the ablation area. In Antarctica, almost all of the predicted changes are concentrated in the West Antarctic Ice Sheet, which is still retreating at both the Weddell and Ross Sea margins. Over most of both ice sheets, the model indicates that the surface elevation trend is dominated by ice thickness changes rather than by bedrock elevation changes.
-
The Holocene glacial and climatic development in Antarctica differed considerably from that in the Northern Hemisphere. Initial deglaciation of inner shelf and adjacent land areas in Antarctica dates back to between 10-8 Kya, when most Northern Hemisphere ice sheets had already disappeared or diminished considerably. The continued deglaciation of currently ice-free land in Antarctica occurred gradually between ca. 8-5 Kya. A large southern portion of the marine-based Ross Ice Sheet disintegrated during this late deglaciation phase. Some currently ice-free areas were deglaciated as late as 3 Kya. Between 8-5 Kya, global glacio-eustatically driven sea level rose by 10-17m, with 4-8 m of this increase occurring after 7 Kya. Since the Northern Hemisphere ice sheets had practically disappeared by 8-7 Kya, we suggest that Antarctic deglaciation caused a considerable part of the global sea level rise between 8-7 Kya, and most of it between 7-5 Kya. The global mid-Holocene sea level high stand, broadly dated to between 8-4 Kya, and the Littorina-Tapes transgressions in Scandinavia and simultaneous transgressions recorded from sites e.g. in Svalbard and Greenland, dated to 7-5 Kya, probably reflect input of meltwater from the Antarctic deglaciation.
-
During 1996-97 a European Project for Ice Goring in Antarctica (EPIGA) pre-site surveying traverse worked in the area between 70° S, 5° E and 75° S, 15° E in Dronning Maud Land. We present data obtained from 10 and 20 m deep firn cores drilled between the coast and 600 km inland (to 3450 m a.s.l.). The cores were analyzed for electrical conductivity measurements and total β activity to obtain accumulation data between known time horizons. In addition, some of the cores were analyzed for oxygen isotopes. Annual accumulation varies from 271 mm we. at Fimbulisen to 24 mm we at 2840 m a.s.l. Accumulation at core sites 2400-3000 m a.s.l. has increased by 16-48% since 1965 compared to the 1955-65 period. However, the core sites above 3250 m a.s.l. and one core location on the ice shelf show a decrease during the same period. Furthermore, no change can be detected at the most inland site for the period 1815-1996. In all the cores the last few years seem to have been some of the warmest in these records.
-
In the near coastal regions of Dronning Maud Land, Antarctica, below-surface ice-melt in blue-ice areas has been observed. The low scattering coefficients of the large-grained blue-ice allow penetration of solar radiation, thus providing an energy source below the ice surface. The sub-surface meltwater is significant enough to show up on remote-sensing imagery in the form of ice-covered lakes. Adjacent snow-accumulation areas have much higher scattering coefficients and consequently limit solar radiation penetration in these regions. These snow and ice surfaces are generally below freezing, and little surface melting occurs. To assess the response of these melt features to changes in atmospheric forcings such as cloudiness, air temperature, and snow accumulation, a physically-based model of the coupled atmosphere, radiation, snow, and blue-ice system has been developed. The model consists of a heat transfer equation with a spectrally-dependent solar-radiation source term. The penetration of radiation into the snow and blue-ice depends on the surface albedo, and the snow and blue-ice grain size and density. Model simulations show that ice melt occurring in this area is sensitive to potential variations in atmospheric forcing. Under certain conditions more traditional surface melting occurs and, under other conditions, the existing melt processes can be shut down completely. In light of the sensitivity of this system to variations in atmospheric forcing, and the ability to view melt-related features using remote sensing, a tool exists to efficiently monitor variations in Antarctic coastal climate.
-
In the Jutulgryta area of Dronning Maud Land, Antarctica, subsurface melting of the ice sheet has been observed. The melting takes place during the summer months in blue-ice areas under conditions of below-freezing air and surface temperatures. Adjacent snow-covered regions, having the same meteorological and climatic conditions, experience little or no subsurface melting. To help explain and understand the observed melt-rate differences in the blue-ice and snow-covered areas, a physically based numerical model of the coupled atmosphere, radiation, snow and blue-ice system has been developed. The model comprises a heat-transfer equation which includes a spectrally dependent solar-radiation source term. The penetration of radiation into the snow and blue ice depends on the solar-radiation spectrum, the surface albedo and the snow and blue-ice grain-sizes and densities. In addition, the model uses a complete surface energy balance to define the surface boundary conditions. It is run over the full annual cycle, simulating temperature profiles and melting and freezing quantities throughout the summer and winter seasons. The model is driven and validated using field observations collected during the Norwegian Antarctic Research Expedition (NARE) 1996–97. The simulations suggest that the observed differences between subsurface snow and blue-ice melting can be explained largely by radiative and heat-transfer interactions resulting from differences in albedo, grain-size and density between the two mediums.
-
Observation of the retreat and disintegration of ice shelves around the Antarctic Peninsula during the last three decades and associated changes in air temperature, measured at various meteorological stations on the Antarctic Peninsula, are reviewed. The climatically induced retreat of the northern Larsen Ice Shelf on the east coast and of the Wordie, George VI, and Wilkins ice shelves on the west coast amounted to about 10 000 km2 since the mid-1960s. A summary is presented on the recession history of the Larsen Ice Shelf and on the collapse of those sections north of Robertson Island in early 1995. The area changes were derived from images of various satellites, dating back to a late 1963 image from the recently declassified US Argon space missions. This photograph reveals a previously unknown, minor advance of the northern Larsen Ice Shelf before 1975. During the period of retreat a consistent and pronounced warming trend was observed at the stations on both east and west coasts of the Antarctic Peninsula, but a major cause of the fast retreat and final collapse of the northernmost sections of the Larsen Ice Shelf were several unusually warm summers. Temperature records from the nearby station Marambio show that a positive mean summer temperature was reached for the first time in 1992-93. Recent observations indicate that the process of ice shelf disintegration is proceeding further south on both sides of the Antarctic Peninsula.
-
Temperature, density and accumulation data were obtained from shallow firn cores, drilled during an overland traverse through a previously unknown part of Dronning Maud Land, East Antarctica. The traverse area is characterised by high mountains that obstruct the ice flow, resulting in a sudden transition from the polar plateau to the coastal region. The spatial variations of potential temperature, near-surface firn density and accumulation suggest that katabatic winds are active in this region. Proxy wind data derived from firn-density profiles confirm that annual mean wind speed is strongly related to the magnitude of the surface slope. The high elevation of the ice sheet south of the mountains makes for a dry, cold climate, in which mass loss owing to sublimation is small and erosion of snow by the wind has a potentially large impact on the surface mass balance. A simple katabatic-wind model is used to explain the variations of accumulation along the traverse line in terms of divergence/convergence of the local transport of drifting snow. The resulting wind- and snowdrift patterns are closely connected to the topography of the ice sheet: ridges are especially sensitive to erosion, while ice streams and other depressions act as collectors of drifting snow.
-
We report in this study the distribution of 10Be in the top 40 m of the Renland ice core (East Greenland) and in a 30 m long core from DML (Dronning Maud Land, Antarctica) for the period 1931–1988. The two sites show differences in10Be content, the Antarctica site showing smaller variance and a lower average 10Be annual flux. Similarly, the average accumulation rate (cm water equivalent year−1) is higher in the Renland relative to DML. The variability in accumulation (precipitation) rates seems to explain part of the difference in10Be flux between the two polar sites. Cyclic fluctuations of 10Be flux correlate with the 11-year sunspot number and cosmic ray intensity than with the aa index (perturbation of the geomagnetic activity by the solar wind). Our data corroborate 10Be cyclic fluctuation pattern from the Dye 3 ice core and confirm a promising potential for correlation of global and local events.
-
The mass balance of the Antarctic ice cap, its stability, and the role of the surrounding ice shelf in bottomwater mass formation is, to a large extent, dictated by processes associated with subsurface freezing and melting, where the submerged ice meets the surrounding ocean. It is demonstrated how multifrequency ground-penetrating radar data collected at the Riiser-Larsenisen can be used to examine the physical conditions of the ice-shelf subsurface. The received radar signal from three different frequency intervals, 10-30, 155-170, and 330-360 MHz (range of wavelengths from 15 to 0.5 m in the ice), was analyzed by using a plane reflector model. It is demonstrated that the data can be successfully used to distinguish between types of ice at the ice-ocean interface, such as for freezing marine ice, melting marine ice, melting meteoric ice from the ice cap, and melting firn/ice. The data analysis shows that the subsurface can be regarded as rough on length scales in the order of 1 m.
-
A mass-balance programme was initiated on Jutulstraumen ice stream, western Dronning Maud Land,Antarctica, during the austral summer 1992-93. As a part of the mass-balance programme, accumulation rate was measured along the centre line of Jutulstraumen from the shelf edge up to the plateau at about 2500 m a.s.l. Accumulation distribution obtained from seven shallow firn cores and 48 slake readings is presented. The overall net accumulation trend displays a decreasing accumulation with increasing elevation and distance to coast, but on both the mesoscale and microscale there are significant variations. This is due to complex patterns of precipitation controlled by orography and redistribution by katabatic winds. The local accumulation distribution (few km scale) was found to be dependent on downslope surface gradient (aspect north, northwest), and variations up to 100% were found over distances of less than 3 km. The large variation in accumulation is important when selecting new core sites and for interpretation of temporal and spatial variations in accumulation derived from firn cores.
-
During the austral summer of 1993-94 a number of 1-2 m deep snow pits were sampled in connection with firn-coring in western Dronning Maud Land, Antarctica. The traverse went from 800 to about 3000 m a.s.l. upon the high-altitude plateau. Profiles of cations (Na+, K+, Mg2+, Ca2+), anions (Cl−, NO3-, SO42- , CH3SO3−) and stable oxygen isotopes (δ18O) from 11 snow pils are presented here. Close to the coast 2 m of snow accumulates in about 2-3 years, whilst at sites on the high-altitude plateau 2 m of snow accumulates in 10—14 years. The spatial variation in ion concentrations shows that the ions can be divided into two groups, one with sea-salt elements and methane sulfonate and the other with nitrate and sulfate. For the sca-salt elements and methane sulfonate the concentrations decrease with increasing altitude and increasing distance from the coast, as well as with decreasing temperature and decreasing accumulation rate. For nitrate and sulfate the concentrations are constant or increase with respect to these parameters. This pattern suggests that the sources for sca-salt elements and methane sulfonate are local, whereas the sources for nitrate and sulfate are a mixture of local and long-range transport.
Explore
Topic
- glasiologi
- akkumulasjon (4)
- Antarktis (52)
- biologi (4)
- blåis (3)
- bølger (2)
- botanikk (1)
- Bouvetøya (4)
- brehylle (5)
- Den Norske Antarktisekspedisjonen 1956-60 (1)
- Det internasjonale geofysiske år (IGY) 1957/1958 (1)
- drivhuseffekt (1)
- Dronning Maud Land (96)
- ekspedisjoner (37)
- firnsnø (3)
- fjernanalyse (2)
- forskning (29)
- fugler (1)
- fysisk geografi (3)
- geodesi (6)
- geofysikk (13)
- geografi (2)
- geokjemi (3)
- geologi (21)
- geomorfologi (2)
- georadar (1)
- global oppvarming (1)
- gravimetri (2)
- havbølger (1)
- havbunnen (2)
- havet (1)
- havis (11)
- havnivåstigning (2)
- havstrømmer (2)
- hvalfangst (1)
- hydrologi (1)
- innlandsis (23)
- is (8)
- isberg (6)
- isbre (2)
- isbreer (27)
- isbrem (7)
- isfjell (7)
- isfront (4)
- iskjerner (6)
- isshelf (24)
- isstrøm (9)
- kalv (1)
- kalving (5)
- karbondioksid (1)
- kartlegging (2)
- kjemi (1)
- klima (3)
- klimaendringer (11)
- klimatologi (6)
- konferanse (1)
- kongress (1)
- kontinentalsokkel (3)
- målinger (1)
- marin biologi (3)
- marin geofysikk (2)
- marin geologi (3)
- marinøkologi (1)
- Maudheim (Antarktis) (1)
- Maudheimekspedisjonen (26)
- metamorfologi (1)
- meteorologi (20)
- miljøforskning (1)
- morfologi (5)
- NARE 1976/77 (2)
- NARE 1978/79 (8)
- NARE 1984/85 (3)
- NARE 1989/90 (3)
- NARE 1991/92 (3)
- NARE 1992/93 (6)
- NARE 1993/94 (5)
- NARE 1996/97 (7)
- NARE 1997/98 (2)
- NARE ekspedisjoner (3)
- NBSAE 1949-52 (26)
- Norge (1)
- Norsk-britisk-svenske antarktisekspedisjon (26)
- Norvegia ekspedisjoner (1)
- Norwegian Antarctic Expedition 1968-69 (1)
- NSBX 1949-52 (27)
- nunataker (1)
- observasjoner (4)
- ornitologi (4)
- oseanografi (16)
- paleoglasiologi (1)
- paleoklimatologi (2)
- polarekspedisjoner (1)
- polarforskning (1)
- polarområdene (6)
- satellitt (1)
- satellittbilder (4)
- satellitteknologi (1)
- sedimenter (2)
- sedimentologi (3)
- seismologi (7)
- sjøis (1)
- sjøvann (1)
- smelting (1)
- snø (13)
- Sør-Orknøyene (1)
- Sør-Shetlandsøyene (1)
- Sørishavet (25)
- stabile isotoper (1)
- storbreen (1)
- stratigrafi (8)
- subglasial innsjø (1)
- symposium (2)
- teknologi (1)
- telemetri (1)
- topografi (6)
- vannmasser (1)
- vulkaner (1)
- Weddellhavet (8)
- zoologi (1)
Resource type
- Book (11)
- Book Section (52)
- Conference Paper (2)
- Document (5)
- Journal Article (93)
- Thesis (1)
Publication year
-
Between 1900 and 1999
-
Between 1920 and 1929
(1)
- 1928 (1)
-
Between 1930 and 1939
(1)
- 1933 (1)
- Between 1940 and 1949 (3)
- Between 1950 and 1959 (26)
- Between 1960 and 1969 (17)
- Between 1970 and 1979 (19)
- Between 1980 and 1989 (38)
- Between 1990 and 1999 (59)
-
Between 1920 and 1929
(1)