Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 37 resources
-
Submarine groundwater discharge (SGD) measurements have been limited along the Antarctic coast, although groundwater discharge is becoming recognized as an important process in the Antarctic. Quantifying this meltwater pathway is important for hydrologic budgets, ice mass balances and solute delivery to the coastal ocean. Here, we estimate the combined discharge of subglacial and submarine groundwater to the Antarctic coastal ocean. SGD, including subglacial and submarine groundwater, is quantified along the WAP at the Marr Glacier terminus using the activities of naturally occurring radium isotopes (223Ra, 224Ra). Estimated SGD fluxes from a 224Ra mass balance ranged from (0.41 ± 0.14)×104 and (8.2 ± 2.3)×104m3 d−1. Using a salinity mass balance, we estimate SGD contributes up to 32% of the total freshwater to the coastal environment near Palmer Station. This study suggests that a large portion of the melting glacier may be infiltrating into the bedrock and being discharged to coastal waters along the WAP. Meltwater infiltrating as groundwater at glacier termini is an important solute delivery mechanism to the nearshore environment that can influence biological productivity. More importantly, quantifying this meltwater pathway may be worthy of attention when predicting future impacts of climate change on retreat of tidewater glaciers.
-
The Weddell Gyre (WG) is one of the main oceanographic features of the Southern Ocean south of the Antarctic Circumpolar Current which plays an influential role in global ocean circulation as well as gas exchange with the atmosphere. We review the state-of-the art knowledge concerning the WG from an interdisciplinary perspective, uncovering critical aspects needed to understand this system's role in shaping the future evolution of oceanic heat and carbon uptake over the next decades. The main limitations in our knowledge are related to the conditions in this extreme and remote environment, where the polar night, very low air temperatures, and presence of sea ice year-round hamper field and remotely sensed measurements. We highlight the importance of winter and under-ice conditions in the southern WG, the role that new technology will play to overcome present-day sampling limitations, the importance of the WG connectivity to the low-latitude oceans and atmosphere, and the expected intensification of the WG circulation as the westerly winds intensify. Greater international cooperation is needed to define key sampling locations that can be visited by any research vessel in the region. Existing transects sampled since the 1980s along the Prime Meridian and along an East-West section at ~62°S should be maintained with regularity to provide answers to the relevant questions. This approach will provide long-term data to determine trends and will improve representation of processes for regional, Antarctic-wide, and global modeling efforts—thereby enhancing predictions of the WG in global ocean circulation and climate.
-
The region of Recovery Glacier, Slessor Glacier, and Bailey Ice Stream, East Antarctica, has remained poorly explored, despite representing the largest potential contributor to future global sea level rise on a centennial to millennial time scale. Here we use new airborne radar data to improve knowledge about the bed topography and investigate controls of fast ice flow. Recovery Glacier is underlain by an 800 km long trough. Its fast flow is controlled by subglacial water in its upstream and topography in its downstream region. Fast flow of Slessor Glacier is controlled by the presence of subglacial water on a rough crystalline bed. Past ice flow of adjacent Recovery and Slessor Glaciers was likely connected via the newly discovered Recovery-Slessor Gate. Changes in direction and speed of past fast flow likely occurred for upstream parts of Recovery Glacier and between Slessor Glacier and Bailey Ice Stream. Similar changes could also reoccur here in the future.
-
Detailed scanning electron microscopy (SEM) micro-texture and mineralogical analysis of lacustrine sediment recovered from Profound Lake (also known as Uruguay Lake), Antarctica, was conducted in the foreland area of the Collins Glacier, King George Island. Very coarse and coarse sand grade size fractions (2 mm – 600 μm) were examined with SEM/ energy dispersive spectrometry, while the total sand fraction and fines (silt + clay) were examined using x-ray diffraction to determine relationships to source rock, weathering and transport history and long-term clay mineral weathering, all of which are poorly understood in polar areas. The mineralogy of these sediments was compared with petrographical information of the country rock to identify potential detrital sources. The association of recovered detrital minerals, sometimes strongly pre-weathered, supports release from source rock of basaltic and andesitic compositions. The micro-texture analysis of quartz, magnetite and various plagioclase grains show micro-features that reveal a complex weathering–diagenesis history tentatively extending into the Paleogene. The bedrock was eroded mostly by glacial processes and mechanical action presumed to result from glacial crushing. Alteration minerals, likely the product of pre-weathering, are probably sourced from weathered bedrock during contact with the sub-aerial atmosphere prior to entrainment. However, amorphous silica precipitation indicates weathering subsequent to glacial erosion from the source bedrock. Cracks of variable dimensions are mostly characteristic of either frost weathering or glacial transport, and involve mechanical and chemical processes.
-
Dronning Maud Land in East Antarctica represents the central part of the Gondwana supercontinent. Geological mapping and investigation of Dronning Maud Land have been carried out over the last 40-50 years. The existing geological maps of Dronning Maud Land are, for a large part, based on fairly old data, which makes these maps inhomogeneous. The maps are at different scales, contain different levels of details, and the standards for classification of the rock units may also differ between the maps. This limits the ability to use these map to draw an overview tectonic model of the evolution of Dronning Maud Land. Moreover, the existing topographic dataset from Dronning Maud Land is based on fairly old topographic maps (1960s), and there is a discrepancy between the topographic dataset and the more recent Landsat images. There are still unmapped areas.
-
The metamorphic basement of the Heimefrontfjella in western Dronning Maud Land (Antarctica) forms the western margin of the major ca. 500 million year old East African/East Antarctic Orogen that resulted from the collision of East Antarctica and greater India with the African cratons. The boundary between the tectonothermally overprinted part of the orogen and its north-western foreland is marked by the subvertical Heimefront Shear Zone. North-west of the Heimefront Shear Zone, numerous low-angle dipping ductile thrust zones cut through the Mesoproterozoic basement. Petrographic studies, optical quartz c-axis analyses and x-ray texture goniometry of quartz-rich mylonites were used to reveal the conditions that prevailed during the deformation. Mineral assemblages in thrust mylonites show that they were formed under greenschist-facies conditions. Quartz microstructures are characteristic of the subgrain rotation regime and oblique quartz lattice preferred orientations are typical of simple shear-dominated deformation. In contrast, in the Heimefront Shear Zone, quartz textures indicate mainly flattening strain with a minor dextral rotational component. These quartz microstructures and lattice preferred orientations show signs of post-tectonic annealing following the tectonic exhumation. The spatial relation between the sub-vertical Heimefront Shear Zone and the low-angle thrusts can be explained as being the result of strain partitioning during transpressive deformation. The pure-shear component with a weak dextral strike-slip was accommodated by the Heimefront Shear Zone, whereas the north–north-west directed thrusts accommodate the simple shear component with a tectonic transport towards the foreland of the orogen. Keywords: Dronning Maud Land; quartz microfabrics; X-ray texture goniometry; shear zones; mylonites.
-
This paper describes the significant direct and indirect contributions to science made by the Norwegian polar explorer Roald Amundsen in the period 1897–1924. It documents that his expeditions through the North-west Passage (1903–06) with Gjøa, to the South Pole (1910–12) with Fram and through the North-east Passage (1918–1920) and the Chukchi and East Siberian seas (1921–25) with Maud yielded vast amounts of published scientific material on meteorology, terrestrial magnetism, geology, palaeontology, oceanography, ethnography, zoology and botany, which, though celebrated at the time, have since received scant recognition in more recent assessments of Amundsen’s achievements. Keywords: Fridtjof Nansen; polar exploration; South Pole; North-west Passage; North-east Passage; H.U. Sverdrup.
-
The Vestfold Hills and Rauer Group in East Antarctica have contrasting Archean to Neoproterozoic geological histories and are believed to be juxtaposed along a suture zone that now lies beneath the Sørsdal Glacier. Exact location and age of this suture zone are unknown, as is its relationship to regional deformation associated with the amalgamation of East Gondwana. To image the suture zone, magnetotelluric (MT) data were collected in Prydz Bay, East Antarctica, mainly along a profile crossing the Sørsdal Glacier and regions inland of the Vestfold Hills and Rauer Group islands. Time-frequency analysis of the MT time series yielded three important observations: (1) Wind speeds in excess of ∼8 m/s reduce coherence between electric and magnetic fields due to charged wind-blown particles of ice and snow. (2) Estimation of the MT transfer function is best between 1000 and 1400 UT when ionospheric Hall currents enhance the magnetic source field. (3) Nonplanar source field effects were minimal but detectable and removed from estimation of the MT transfer function. Inversions of MT data in 2-D and 3-D produce similar resistivity models, where structures in the preferred 3-D resistivity model correlate strongly with regional magnetic data. The electrically conductive Rauer Group is separated from the less conductive Vestfold Hills by a resistive zone under the Sørsdal Glacier, which is interpreted to be caused by oxidation during suturing. Though a suture zone has been imaged, no time constrains on suturing can be made from the MT data.
-
The mid-Piacenzian (~3 Ma) represents the most recent warm period in Earth's history on a geological time scale; it is characterized by a significant rise of global sea level. The simulation of the size and location of the ice sheets and the investigation of the uncertainty in the simulations are potentially helpful for constraining reconstructed sea level changes. In this study, we focus on the behavior of the Antarctic ice sheet (AIS) in the mid-Piacenzian. We investigate the influence of topography correction, model parameters, climate forcings, and model resolution on the modeled AIS and explore the isolated role of atmospheric and oceanic forcings. Forced by the simulated climate changes with the Norwegian Earth System Model, the Parallel Ice Sheet Model (15 km × 15 km) produces a nearly collapsed West AIS (WAIS) in the mid-Piacenzian, with no significant retreat of the East AIS (EAIS). The role of increased air temperature plays a key role in the mass loss of the mid-Piacenzian AIS, while its role is comparable to the role of ocean warming on the melting of the WAIS. In terms of the range of sea level changes, the largest source of uncertainty in the modeled AIS is derived from ice sheet model parameters and climate forcings. Although the employed model parameters, topography correction factors, and model resolution affect the simulated AIS in the mid-Piacenzian, large-scale deglaciation of the EAIS in our sensitivity experiments may only be possible with additional warming.
-
The geology of East Antarctica and its correlation in major supercontinents is highly speculative, since only a very small part of it is exposed. Therefore a better connection between geology and geophysics is needed in order to correlate exposed regions with ice-covered, geophysically-defined, blocks. In Dronning Maud Land (DML), two distinct late Mesoproterozoic/early Neoproterozoic tectono-metamorphic provinces appear, separated by the major, NE-trending Forster Magnetic Anomaly and South Orvin Shear Zone. To the west of this lineament, the Maud Belt has clear affinities with Grenville-age continent-continent mobile belts. East of the Forster Magnetic Anomaly, juvenile rocks with early Neoproterozoic age (Rayner-age) and an accretionary character crop out. The international GEA-II expedition (2012) targeted a white spot on the geological map immediately to the E of the Forster Magnetic Anomaly. This area allows the characterization and ground-truthing of a large and mostly ice-covered region, the SE DML Province that had previously been interpreted as an older cratonic block. However, new SHRIMP/SIMS zircon analyses and their geochemistry indicates that the exposed basement consists of a ca. 1000-900 Ma juvenile terrane that is very similar to rocks in Sor Rondane. It lacks significant metamorphic overprint at the end of crust formation, but it shows medium to high-grade overprinting between ca. 630-520 Ma, associated with significant felsic melt production, including A-type granitoid magmatism. Therefore, the aeromagnetically distinct SE DML province does neither represent the foreland of a Late Neoproterozoic/EarlyPaleozoic mobile belt, nor a craton, as has previously been speculated. It more likely represents the more juvenile, westward continuation of Rayner-age crust (1000-900 Ma). To the west it abuts along the NE-trending Forster Magnetic Anomaly. The latter is interpreted as a suture, which separates typical Grenville-age crust of the Maud Belt (ca. 1200-1030 Ma) to the W from Rayner-age crust to the E. Therefore the larger eastern part of DML has clearly Indian affinities. Its juvenile character with a lack of metamorphic overprint at the end of crust formation points to an accretionary history along this part of the Indian segment of Rodinia, immediately following final Rodinia assembly.
-
This article highlights the field geology, geochronology and geochemistry of an important and previously unstudied region between eastern (Sør Rondane Mountains) and central Dronning Maud Land (DML). The area allows the characterisation and ground-truthing of a large and mostly ice-covered area that is geophysically distinct and which was previously interpreted as a potentially older cratonic block south of a Late Neoproterozoic/Early Paleozoic (LN/EP) mobile belt, as exposed in the Sør Rondane Mts. (SRM). SHRIMP/SIMS zircon analyses of 20 samples together with new geochemistry indicate that the exposed basement consists of a ca. 1000–900Ma juvenile terrane that is very similar to the juvenile rocks of the SW-Terrane of the SRM, a characteristic gabbro–trondhjemite–tonalite–granite (GTTG) suite, with normalised trace element patterns typical for subduction-related magmas and mostly positive initial epsilon Nd values. The area shows strong LN/EP crustal reworking, migmatisation and melt production, including 560–530Ma A-type magmatism. Therefore, this area is very similar to the SW-Terrane and differs only in the degree of LN/EP reworking. We interpret the SW-Terrane of Sør Rondane as a mega-boudin sandwiched in between rheologically weaker portions of similar oceanic arc terranes. Therefore, the study area, and thereby the aeromagnetically distinct SE DML province does neither represent the foreland of a LN/EP mobile belt, nor a craton, as speculated based on geophysical data alone. Instead, a large Tonian Oceanic Arc Super Terrane (TOAST) with significant extent emerges. Its western limit is represented by the Forster Magnetic Anomaly, which represents a suture to the Grenville-age Maud Belt. East of the TOAST, the Rayner Complex is similar in age but otherwise distinctly different. The Rayner Complex has a much longer history of island arc accretions with continent–continent collision at ca. 950Ma and it has markedly more evolved crust. In contrast, the TOAST has a pronounced juvenile character without significant inheritance and lacks metamorphic overprint immediately following crust formation. This indicates that it has not been an integral part of Rodinia. The eastern boundary of the TOAST is probably in the vicinity of the Yamato Mts., whilst its northern extension might be seen in the Vohibori Terrane (SW Madagascar), which in turn could correlate with the Arabian Nubian Shield. The LN/EP tectono-metamorphic overprint of the TOAST shows a slight decrease in ages from W to E, possibly indicating that it first amalgamated on its Kalahari side before it was attached to Rukerland/Indo-Antarctica.
-
The West Antarctic Ice Sheet (WAIS) is considered the most unstable part of the Antarctic Ice Sheet. As the WAIS is mostly grounded below sea level, its stability is of great concern. A collapse of large parts of the WAIS would result in a significant global sea-level rise. At present, the WAIS shows dramatic ice loss in its Amundsen Sea sector, especially in Pine Island Bay. Pine Island Glacier (PIG) is characterised by fast flow, major thinning and rapid grounding-line retreat. Its mass los over recent decades is generally attributed to melting caused by the inflow of warm Circumpolar Deep Water (CDW). Future melting of PIG may result in a sea level tipping point, because it could trigger widespread collapse of the WAIS, especially when considering ongoing climate change.
-
The West Antarctic Ice Sheet (WAIS) is considered the most unstable part of the Antarctic Ice Sheet. As the WAIS is mostly grounded below sea level, its stability is of great concern. A collapse of large parts of the WAIS would result in a significant global sea-level rise. At present, the WAIS shows dramatic ice loss in its Amundsen Sea sector, especially in Pine Island Bay. Pine Island Glacier (PIG) is characterised by fast flow, major thinning and rapid grounding-line retreat. Its mass los over recent decades is generally attributed to melting caused by the inflow of warm Circumpolar Deep Water (CDW). Future melting of PIG may result in a sea level tipping point, because it could trigger widespread collapse of the WAIS, especially when considering ongoing climate change.
-
Structural investigations in western Sør Rondane, eastern Dronning Maud Land (DML), provide new insights into the tectonic evolution of East Antarctica. One of the main structural features is the approximately 120 km long and several hundred meters wide WSW-ENE trending Main Shear Zone (MSZ). It is characterized by dextral high-strain ductile deformation under peak amphibolite-facies conditions. Crosscutting relationships with dated magmatic rocks bracket the activity of the MSZ between late Ediacaran to Cambrian times (circa 560 to 530 Ma). The MSZ separates Pan-African greenschist- to granulite-facies metamorphic rocks with “East African” affinities in the north from a Rayner-age early Neoproterozoic gabbro-tonalite-trondhjemite-granodiorite complex with “Indo-Antarctic” affinities in the south. It is interpreted to represent an important lithotectonic strike-slip boundary at a position close to the eastern margin of the East African-Antarctic Orogen (EAAO), which is assumed to be located farther south in the ice-covered region. Together with the possibly coeval left-lateral South Orvin Shear Zone in central DML, the MSZ may be related to NE directed lateral escape of the EAAO, whereas the Heimefront Shear Zone and South Kirwanveggen Shear Zone of western DML are part of the south directed branch of this bilateral system.
Explore
Topic
- geologi
- Antarctica (1)
- Antarktis (15)
- atmosfæren (1)
- biografi (1)
- biografier (1)
- biologi (3)
- botanikk (1)
- brehylle (2)
- Carsten Borchgrevink (1)
- Carsten Egeberg Borchgrevink (1)
- Cosmogenic nuclide surface exposure age dating (1)
- Deglaciation (1)
- deglasiasjon (1)
- Dronning Maud Land (14)
- ekspedisjonen (2)
- ekspedisjoner (5)
- fjellene (1)
- forskning (5)
- første landgang (2)
- forurensning (1)
- geofysikk (9)
- geografi (1)
- geokjemi (2)
- geokronologi (2)
- geomorfologi (1)
- Geomorphology (1)
- geovitenskap (1)
- Glacial history (1)
- glasiologi (6)
- grunnvann (1)
- havis (1)
- havnivåstigning (3)
- havstrømmer (1)
- hydrologi (1)
- Ice sheet (1)
- Ice Shelf (1)
- innlandsis (5)
- isbre (1)
- isbreer (1)
- isbrem (2)
- isshelf (2)
- isstrøm (1)
- jord (1)
- Kapp Adare (2)
- kartlegging (2)
- kjemi (2)
- klimaendringer (5)
- kontinentalmargin (1)
- Last Glacial Maximum (1)
- magnetotelluriske eksperimenter (1)
- magnetotelluriske målinger (1)
- menneskelig påvirkning (1)
- meteorologi (3)
- mineralogi (2)
- Modelling (1)
- mylonitter (1)
- NARE 1978/79 (1)
- Norsk Polarinstitutt (1)
- nunataker (2)
- oppdagelsesreiser (2)
- oseanografi (3)
- overvintring (2)
- paleoklimatologi (1)
- paleontologi (3)
- petrografi (3)
- polarekspedisjoner (1)
- polarområdene (3)
- Radiocarbon dating (1)
- Roald Amundsen (1)
- Sea level (1)
- sedimenter (1)
- sedimentologi (2)
- seismologi (2)
- sjøis (1)
- Sørishavet (8)
- Southern Cross (2)
- stabile isotoper (1)
- stratigrafi (2)
- svaneøgler (1)
- Sydpolen (1)
- Sydpolsekspedisjonen (1)
- tektonikk (2)
- tidevann (1)
- tungmetaller (1)
- vannmasser (1)
- vannvirvler (1)
- Victoria Land (1)
- Weddellhavet (3)
- zoologi (1)
Resource type
- Book (1)
- Book Section (1)
- Conference Paper (7)
- Document (1)
- Journal Article (25)
- Report (1)
- Thesis (1)