Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Your search

Resource type

Results 11 resources

  • Fluid infiltration into Proterozoic and Early Palaeozoic dry, orthopyroxene-bearing granitoids and gneisses in Dronning Maud Land, Antarctica, has caused changes to rock appearance, mineralogy, and rock chemistry. The main mineralogical changes are the replacement of orthopyroxene by hornblende and biotite, ilmenite by titanite, and various changes in feldspar structure and composition. Geochemically, these processes resulted in general gains of Si, mostly of Al, and marginally of K and Na but losses of Fe, Mg, Ti, Ca, and P. The isotopic oxygen composition (δ18OSMOW = 6.0‰–9.9‰) is in accordance with that of the magmatic precursor, both for the host rock and infiltrating fluid. U-Pb isotopes in zircon of the altered and unaltered syenite to quartz-monzonite indicate a primary crystallization age of 520.2 ± 1.0 Ma, while titanite defines alteration at 485.5 ± 1.4 Ma. Two sets of gneiss samples yield a Rb-Sr age of 517 ± 6 Ma and a Sm-Nd age of 536 ± 23 Ma. The initial Sr and Nd isotopic ratios suggest derivation of the gneisses from a relatively juvenile source but with a very strong metasomatic effect that introduced radiogenic Sr into the system. The granitoid data indicate instead a derivation from Mid-Proterozoic crust, probably with additions of mantle components.

  • Late Tonian (ca. 785–760 Ma) granodioritic to granitic orthogneisses of the Schirmacher Oasis region in Dronning Maud Land (DML), East Antarctica, are interpreted as recording an active continental margin setting at the periphery of Kalahari and Rodinia. The rocks probably represent exposures of a significant tectonic province hidden beneath the ice, the erosional remnants of which are recorded as detrital zircons in late Tonian-Cryogenian metasedimentary rocks throughout central and eastern DML, as well as in ice-rafted debris from recent sediments offshore Dronning Maud Land. The orthogneisses have single-stage Sm-Nd model ages of ca. 1.3–1.5 Ga and zircon Hf-signatures (εHft = +2 – +5), indistinguishable from the adjacent Grenville-age basement rocks of easternmost Kalahari. Their geochemistry suggests that they evolved in the late stages of a continental margin magmatic arc and possibly within a roll-back tectonic framework, suggestive of subduction of relatively old oceanic lithosphere. The eastern Kalahari continental arc is one of a number of continental arcs that characterize the western part of the fragmenting Rodinia and document the supercontinent “turning inside out” after its formation at ca. 1000 Ma and a period of relative tectonic quiescence between ca. 900 and 800 Ma. The rocks show an ultra-high temperature metamorphic overprint that was accompanied by syn-tectonic magmatism from ca. 650 to 600 Ma. The high temperature metamorphism is interpreted to relate to back-arc extension that also led to major anorthosite magmatism elsewhere, prior to continental collision in the region. The rocks lack the subsequent widespread high-grade metamorphic overprint at ca. 590–500 Ma which occurs in the adjacent regions due to Himalayan-style continental collision along the East African-Antarctic Orogen during Gondwana assembly.

  • Dronning Maud Land (DML) is a key area for the better understanding of the geotectonic history and amalgamation processes of the southern part of Gondwana. Here, we present comprehensive new zircon U–Pb–Hf–O, whole-rock Sm–Nd isotopic and geochemical data for late Neoproterozoic-Cambrian igneous rocks along a profile from central to eastern DML, which provides new insights into the crustal evolution and tectonics of the region. In central DML, magmatism dominantly occurred at 530–485 Ma, with 650–600 Ma charnockite and anorthosite locally distributed at its eastern periphery. In contrast, eastern DML experienced long-term and continuous granitic magmatism from ca. 650 Ma to 500 Ma. In central DML, the 650–600 Ma samples are characterized by highly elevated δ18O (7.5–9.5‰) associated with slightly negative to positive εHf(t) values (−1 to +3), indicating significant addition of high-δ18O crustal components, such as sedimentary material at the margin of the Kalahari Craton. Evolved Hf isotopic signatures (εHf(t) = −15 to −6) and moderately elevated O isotopic data (δ18O = 6–8‰) of the Cambrian granitic rocks from central DML indicate a significant incorporation of the pre-existing, old continental crust. In eastern DML, the suprachondritic Hf–Nd isotope signatures and moderate δ18O values of the late Neoproterozoic granites (650–550 Ma) from the Sør Rondane Mountains support the view that they mainly originated from crust of the Tonian Oceanic Arc Super Terrane (TOAST). The post-540 Ma granites, however, have more evolved Hf and Nd isotopic compositions, suggesting an increasing involvement of older continental components during Cambrian magmatism. Nd isotopes of the Cambrian granitic rocks in DML display an increasingly more radiogenic composition towards the east with model ages ranging from late Archean to Mesoproterozoic times, which is in line with the isotopic trend of the Precambrian basement in this region. The late Neoproterozoic (>600 Ma) igneous rocks in central and eastern DML were emplaced in two independent subduction systems, at the periphery of the eastern Kalahari Craton and somewhere within the Mozambique Ocean respectively. The accretion and assembly of the TOAST to the eastern margin of the Kalahari Craton and their collision with surrounding continental blocks was followed by extensive post-collisional magmatism due to delamination tectonics and orogenic collapse in the Cambrian. The late Neoproterozoic–Cambrian igneous rocks in DML thus record an orogenic cycle from subduction-accretion, continental collision to post-collisional process during and after the assembly of Gondwana.

  • This article highlights the field geology, geochronology and geochemistry of an important and previously unstudied region between eastern (Sør Rondane Mountains) and central Dronning Maud Land (DML). The area allows the characterisation and ground-truthing of a large and mostly ice-covered area that is geophysically distinct and which was previously interpreted as a potentially older cratonic block south of a Late Neoproterozoic/Early Paleozoic (LN/EP) mobile belt, as exposed in the Sør Rondane Mts. (SRM). SHRIMP/SIMS zircon analyses of 20 samples together with new geochemistry indicate that the exposed basement consists of a ca. 1000–900Ma juvenile terrane that is very similar to the juvenile rocks of the SW-Terrane of the SRM, a characteristic gabbro–trondhjemite–tonalite–granite (GTTG) suite, with normalised trace element patterns typical for subduction-related magmas and mostly positive initial epsilon Nd values. The area shows strong LN/EP crustal reworking, migmatisation and melt production, including 560–530Ma A-type magmatism. Therefore, this area is very similar to the SW-Terrane and differs only in the degree of LN/EP reworking. We interpret the SW-Terrane of Sør Rondane as a mega-boudin sandwiched in between rheologically weaker portions of similar oceanic arc terranes. Therefore, the study area, and thereby the aeromagnetically distinct SE DML province does neither represent the foreland of a LN/EP mobile belt, nor a craton, as speculated based on geophysical data alone. Instead, a large Tonian Oceanic Arc Super Terrane (TOAST) with significant extent emerges. Its western limit is represented by the Forster Magnetic Anomaly, which represents a suture to the Grenville-age Maud Belt. East of the TOAST, the Rayner Complex is similar in age but otherwise distinctly different. The Rayner Complex has a much longer history of island arc accretions with continent–continent collision at ca. 950Ma and it has markedly more evolved crust. In contrast, the TOAST has a pronounced juvenile character without significant inheritance and lacks metamorphic overprint immediately following crust formation. This indicates that it has not been an integral part of Rodinia. The eastern boundary of the TOAST is probably in the vicinity of the Yamato Mts., whilst its northern extension might be seen in the Vohibori Terrane (SW Madagascar), which in turn could correlate with the Arabian Nubian Shield. The LN/EP tectono-metamorphic overprint of the TOAST shows a slight decrease in ages from W to E, possibly indicating that it first amalgamated on its Kalahari side before it was attached to Rukerland/Indo-Antarctica.

  • The Kalahari Craton is an important building block of the supercontinent Rodinia, but its position with respect to other cratons is still controversially discussed. The Maud Belt in East Antarctica is part of the extensive Namaqua-Natal-Maud Orogen along which Kalahari collided with another continent during Rodinia assembly. One of the continents that have been suggested as collision partners for Kalahari is Western Australia, with the Pinjarra Orogen as the counterpart to the Maud Belt. We investigate this connection from a geochronological point of view. SHRIMP U/Pb zircon analyses of three metasedimentary samples from the Maud Belt date Grenville-age metamorphism within the orogen at ca. 1100–1060Ma. One sample was later affected by Pan-African metamorphism at ca. 540Ma. A second sample is interpreted as a molasse of the Maud Belt and was deposited in the Neoproterozoic. Detrital zircons from all three samples are consistent with derivation of the sediments predominantly from within the Namaqua-Natal-Maud Belt, with minor contributions from the Kalahari Craton. No clear Western Australian fingerprint could be detected in the detrital ages and a direct comparison between detrital zircon ages from the Maud Belt and the Northampton Complex (Pinjarra Orogen, Western Australia) showed distinct differences in the age spectra. Altogether, we consider a collision between Kalahari and south-western Laurentia a more likely scenario.

  • Structural investigations in western Sør Rondane, eastern Dronning Maud Land (DML), provide new insights into the tectonic evolution of East Antarctica. One of the main structural features is the approximately 120 km long and several hundred meters wide WSW-ENE trending Main Shear Zone (MSZ). It is characterized by dextral high-strain ductile deformation under peak amphibolite-facies conditions. Crosscutting relationships with dated magmatic rocks bracket the activity of the MSZ between late Ediacaran to Cambrian times (circa 560 to 530 Ma). The MSZ separates Pan-African greenschist- to granulite-facies metamorphic rocks with “East African” affinities in the north from a Rayner-age early Neoproterozoic gabbro-tonalite-trondhjemite-granodiorite complex with “Indo-Antarctic” affinities in the south. It is interpreted to represent an important lithotectonic strike-slip boundary at a position close to the eastern margin of the East African-Antarctic Orogen (EAAO), which is assumed to be located farther south in the ice-covered region. Together with the possibly coeval left-lateral South Orvin Shear Zone in central DML, the MSZ may be related to NE directed lateral escape of the EAAO, whereas the Heimefront Shear Zone and South Kirwanveggen Shear Zone of western DML are part of the south directed branch of this bilateral system.

  • During two decades (1986 - 2008) of geochronological work in Heimefrontfjella, nearly 130 geochronological ages were produced using a wide range of geochronological techniques. The ages fall into four broad age groups from Archaean to Cenozoic times, revealing a long and complex geological history. In general, Heimefrontfjella consists of Mesoproterozoic high grade basement related to the ∼1100 Ma Maud Belt. This basement is overlain by Permo-Carboniferous sedimentary rocks and Jurassic lavas. Archaean and Palaeoproterozoic detrital zircon ages are recorded from meta-sedimentary rocks probably characterizing the foreland of the Maud Belt. The protolith and metamorphic ages of the Mesoproterozoic Maud Belt fall into two groups. An older age group from ∼1200-1100 Ma is related to back-arc and island arc volcanism. High-grade metamorphism in the Maud Belt is dated between 1090-1060 Ma and is thought to reflect continent-continent collision, possibly related to the formation of Rodinia. Regional cooling to below 500-300 °C at ∼1010-960 Ma in part of the mountain range might indicate rifting of Rodinia. The eastern part of the mountain range is overprinted by the ∼600-500 Ma East African-Antarctic Orogen. The orogenic front of this major mobile belt is exposed in the study area as the Heimefront Shear Zone. East of this major lineament all Ar-Ar, K-Ar and Rb-Sr mineral ages are reset to ∼500 Ma. Initial Gondwana rifting affected the area at c. 180 Ma, when the Bouvet/Karroo mantle plume caused dynamic uplift of the area, followed by burial underneath up to 2 km of Jurassic lava. This led to tempering of the basement up to about 100 °C, as indicated by apatite fission track data. The lava pile underwent erosion in Cretaceous time, when renewed rifting affected the region. Latest tectonic movements might be related to Cenozoic ice loading related to the built up of the Antarctic ice sheet.

  • The Jutulsessen nunataks (72°00′S; 2°30′E), Gjelsvikfjella, Dronning Maud Land (DML), consist mainly of migmatites of two types. A heterogeneous banded amphibolite facies gneisses and a more homogeneous part. In the more homogeneous part, partial melts form along axial planes to tight folds. Numerous pegmatitic dykes occur in both migmatites. The homogeneous part of the migmatite has a granodiorite composition. It displays the depletion of Nb–Ta typical for rocks from destructive plate margins and a strongly fractionated REE pattern, specially in LREE (La/Lu ratios varying between 500 and 800). SIMS dating of zircon from the homogeneous migmatite and two pegmatite dykes resulted in two age groups. A concordant age of 1163±6 Ma is calculated from zircon crystals with no rim/core structure and from cores from structurally complex crystals. This age represents the age of the protolith of the migmatite. A Cambrian age of 504±6 Ma is obtained from zircon rims and from sector-zoned zircons. This age represent the time of migmatisation. Sm–Nd depleted mantle model ages range from 1390 to 1770 Ma and suggest that the protolith to the migmatites contained components of older crust (pre-1163 Ma). An igneous complex consisting of a syenite plug (Stabben syenite), gabbroic rocks and aplitic dykes intrudes the metamorphic complex. The syenite and the aplitic dykes are neither deformed nor migmatised or penetrated by pegmatitic dykes. These rocks have elevated LREE and LILE concentrations with an La/Lu ratio of 450 and an Nb–Ta trough. The gabbroic rocks range in composition from melagabbro to monzogabbro and host numerous pegmatitic dykes. SIMS zircon U–Pb data from the Stabben syenite give an age of 500±8 Ma. This age is regarded as the intrusive age of the Stabben syenite. By the single zircon–Pb evaporation method an age of 495±14 Ma is obtained from the aplitic dykes. Sm–Nd depleted mantle model ages between 1800 and 2220 Ma indicate that the dykes formed from a Paleoproterozoic source. A Mesoproterozoic volcanic arc setting of DML and a correlation with the Natal Province, as suggested by several authors, is supported by data in this study. The studied area has consequently been a part of the Kaapvaal/Kalahari craton since Mesoproterozoic time. The Cambrian migmatisation and the intrusions are interpreted as a result of post-collision activity related to the collision between the Kalahari craton and the combined block of Antarctica and Australia during the final assembly of Gondwana. This collision is suggested to be included in the Kuunga Orogeny introduced by Meerat and Van der Voo [J. Geodynam. 23 (1997) 223].

  • The formation of Gondwana during the late Neoproterozoic to early Cambrian times (550-530 Ma) was traditionally viewed as the welding of two, more or less contiguous, Proterozoic continental masses called East and West Gondwana. The notion of a united West Gondwana is no longer tenable as a wealth of geochronologic and structural data indicate major orogenesis amongst its constituent cratons during the final stages of greater Gondwana assembly. The idea that East Gondwana may also have formed through the amalgamation of a collage of cratonic nuclei during the Cambrian is controversial. Recent paleomagnetic, geochronologic and structural data from elements of East Gondwana indicate that its formation may have extended well into Cambrian time. Thus, the terms ‘East’ and ‘West’ Gondwana may be relegated to convenient geographical terms rather than any connotation of tectonic coherence during the Proterozoic. In addition, the paleomagnetic data also challenge the conventional views of the Neoproterozoic supercontinent Rodinia and the SWEAT fit. Alternative variants including Protopangea and AUSWUS are not supported by paleomagnetic data during the interval 800–700 Ma.

  • Ages of six volcanic and plutonic rocks on Barton Peninsula, King George Island, were determined using 40Ar/39Ar and K-Ar isotopic systems. The 40Ar/39Ar and K-Ar ages of basaltic andesite and diorite range from 48 My to 74 My and systematically decrease toward the upper stratigraphic section. Two specimens of basaltic andesite which occur in the lowermost sequence of the peninsula, however, apparently define two distinct plateau ages of 52-53 My and 119-120 My. The latter is interpreted to represent the primary cooling age of basaltic andesite, whereas the former is interpreted as the thermally-reset age caused by the intrusion of Tertiary granitic pluton. The isochron ages calculated from the isotope correlation diagram corroborate our interpretation based on the apparent plateau ages. It is therefore likely that volcanism was active during the Early Cretaceous on Barton Peninsula. When the K-Ar ages of previous studies are taken into account with our result, the ages of basaltic andesite in the northern part of the Barton Peninsula are significantly older than those in the southern part. Across the north-west-south-east trending Barton fault bounding the two parts, there are significant differences in geochronologic and geologic aspects.

Last update from database: 3/1/25, 3:17 AM (UTC)