Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Your search

Topic

Results 7 resources

  • Two sediment cores obtained from the continental shelf of the northern South Shetland Islands, West Antarctica, consist of: an upper unit of silty mud, bioturbated by a sluggish current, and a lower unit of well-sorted, laminated silty mud, attributed to an intensified Polar Slope Current. Geochemical and accelerator mass spectrometry 14C analyses yielded evidence for a late Holocene increase in sea-ice extent and a decrease in phytoplankton productivity, inferred from a reduction in the total organic carbon content and higher C : N ratios, at approximately 330 years B.P., corresponding to the Little Ice Age. Prior to this, the shelf experienced warmer marine conditions, with greater phytoplankton productivity, inferred from a higher organic carbon content and C : N ratios in the lower unit. The reduced abundance of Weddell Sea ice-edge bloom species (Chaetoceros resting spores, Fragilariopsis curta and Fragilariopsis cylindrus) and stratified cold-water species (Rhizosolenia antennata) in the upper unit was largely caused by the colder climate. During the cold period, the glacial restriction between the Weddell Sea and the shelf of the northern South Shetland Islands apparently hindered the influx of ice-edge bloom species from the Weddell Sea into the core site. The relative increases in the abundance of Actinocyclus actinochilus and Navicula glaciei, indigenous to the coastal zone of the South Shetland Islands, probably reflects a reduction in the dilution of native species, resulting from the diminished influx of the ice-edge species from the Weddell Sea. We also document the recent reduction of sea-ice cover in the study area in response to recent warming along the Antarctic Peninsula.

  • The reconstruction of the paleoclimatic and paleoceanographic development of the late Quaternary Southern Ocean and adjacent continental areas in high temporal and spatial resolution is a main goal of our longterm study. During ANT-XX/2 the sedimentary budget of biogenic and terrigenous components and their variability was investigated in cooperation with geochemical projects. Main objectives were the relationships between production of biogenic components and input of terrigenous components and involved nutrients.

  • Sediment textural properties and total organic carbon (TOC) contents of three sediment cores from Maxwell Bay, King George Island, West Antarctica, record changes in Holocene glaciomarine sedimentary environments. The lower sedimentary unit is mostly composed of TOC-poor diamictons, indicating advanced coastal glacier margins and rapid iceberg discharge in proximal glaciomarine settings with limited productivity and meltwater supply. Fine-grained, TOC-rich sediments in the upper lithologic unit suggest more open water and warm conditions, leading to enhanced biological productivity due to increased nutrient-rich meltwater supply into the bay. The relationship between TOC and total sulfur (TS) indicates that the additional sulfur within the sediment has not originated from in situ pyrite formation under the reducing condition, but rather may be attributed to the detrital supply of sand-sized pyrite from the hydrothermal-origin, quartz-pyrite rocks widely distributed in King George Island. The evolution of bottom-water hydrography after deglaciation was recorded in the benthic foraminiferal stable-isotopic composition, corroborated by the TOC and lithologic changes. The Ø18O values indicate that bottom-water in Maxwell Bay was probably mixed gradually with intruding 18O-rich seawater from Bransfield Strait. In addition, the Ø13C values reflect a spatial variability in the carbon isotope distribution in Maxwell Bay, depending on marine productivity as well as terrestrial carbon fluxes by meltwater discharge. The distinct lithologic transition, dated to approximately 8000 yr BP (uncorrected) and characterized by textural and geochemical contrasts, highlights the postglacial environmental change by a major coastal glacier retreat in Maxwell Bay.

  • The Jutulsessen nunataks (72°00′S; 2°30′E), Gjelsvikfjella, Dronning Maud Land (DML), consist mainly of migmatites of two types. A heterogeneous banded amphibolite facies gneisses and a more homogeneous part. In the more homogeneous part, partial melts form along axial planes to tight folds. Numerous pegmatitic dykes occur in both migmatites. The homogeneous part of the migmatite has a granodiorite composition. It displays the depletion of Nb–Ta typical for rocks from destructive plate margins and a strongly fractionated REE pattern, specially in LREE (La/Lu ratios varying between 500 and 800). SIMS dating of zircon from the homogeneous migmatite and two pegmatite dykes resulted in two age groups. A concordant age of 1163±6 Ma is calculated from zircon crystals with no rim/core structure and from cores from structurally complex crystals. This age represents the age of the protolith of the migmatite. A Cambrian age of 504±6 Ma is obtained from zircon rims and from sector-zoned zircons. This age represent the time of migmatisation. Sm–Nd depleted mantle model ages range from 1390 to 1770 Ma and suggest that the protolith to the migmatites contained components of older crust (pre-1163 Ma). An igneous complex consisting of a syenite plug (Stabben syenite), gabbroic rocks and aplitic dykes intrudes the metamorphic complex. The syenite and the aplitic dykes are neither deformed nor migmatised or penetrated by pegmatitic dykes. These rocks have elevated LREE and LILE concentrations with an La/Lu ratio of 450 and an Nb–Ta trough. The gabbroic rocks range in composition from melagabbro to monzogabbro and host numerous pegmatitic dykes. SIMS zircon U–Pb data from the Stabben syenite give an age of 500±8 Ma. This age is regarded as the intrusive age of the Stabben syenite. By the single zircon–Pb evaporation method an age of 495±14 Ma is obtained from the aplitic dykes. Sm–Nd depleted mantle model ages between 1800 and 2220 Ma indicate that the dykes formed from a Paleoproterozoic source. A Mesoproterozoic volcanic arc setting of DML and a correlation with the Natal Province, as suggested by several authors, is supported by data in this study. The studied area has consequently been a part of the Kaapvaal/Kalahari craton since Mesoproterozoic time. The Cambrian migmatisation and the intrusions are interpreted as a result of post-collision activity related to the collision between the Kalahari craton and the combined block of Antarctica and Australia during the final assembly of Gondwana. This collision is suggested to be included in the Kuunga Orogeny introduced by Meerat and Van der Voo [J. Geodynam. 23 (1997) 223].

  • A light, mining drill rig deployed from the stern of a research vessel has been used to carry out shallow drilling in 212 m water depth on the continental shelf in the eastern Weddell Sea. Penetration was 15 m below the seabed with 18% recovery in the 31 hours available for the experiment. The recovered glacigenic sediments are predominantly volcanic material of basaltic and andesitic composition with petrological characteristics and age similar to the continental flood basalts exposed in Vestfjella, about 130 km upstream from the drill site. The sediments include a reworked marine Miocene diatom flora. The material documents oscillations of the East Antarctic Ice Sheet over the past 30 ka. The lowermost diamicton probably represents a deformation till, and the grounding line retreated past the drill site 30 km from the shelf edge about 30 kyr BP. A readvance occurred during the Late Wisconsin Glacial Maximum. Assuming a reservoir correction of 1300 yr, marine conditions existed at the site between 10.1-7 kyr BP, and later at least between 2.8 and 2.5 kyr BP. The stratigraphy at the site has been disturbed by iceberg ploughing and/or contact between the ice shelf and the sea floor during local advances after 2.5 kyr BP.

  • Continental flood basalts (CFBs) of Jurassic age make up the Vestfjella mountains of western Dronning Maud Land and demonstrate an Antarctic extension of the Karoo large igneous province. A detailed geochemical study of the 120-km-long Vestfjella range shows the CFB suite to consist mainly of three intercalated basaltic rock types designated CT1, CT2 and CT3 (chemical types 1, 2 and 3) that exhibit different incompatible trace element ratios. CT1 and CT2 of north Vestfjella record wide ranges of Nd and Sr isotopic compositions with initial εNd and εSr ranging from +7·6 to −16·0 and −16 to +65, respectively. The southern Vestfjella is dominated by CT3 with near-chondritic εNd (+2·0 to −4·1) and εSr (−11 to +19). A volumetrically minor suite of ocean island basalt (OIB-)like CT4 dykes (εNd +3·6, εSr +1) cuts the lava sequence in north Vestfjella. The pronounced isotopic differences suggest different magmatic plumbing systems for the heterogeneous CT1 and CT2 suites and the relatively homogeneous CT3 lavas. This is further supported by the palaeoflow directions, which point to major source regions to the north (CT1 and CT2) and east (CT3) of Vestfjella. These source regions can be associated with two contemporaneous major lithospheric thinning zones that permitted magma emplacement and controlled the melting of upper-mantle sources in the Jurassic Dronning Maud Land. The CT1 and CT2 magmas utilized the northern zone of thinning and were emplaced into the 3 Ga Grunehogna craton, whereas the CT3 magmas were emplaced through thinned Proterozoic Maud Belt lithosphere. Trace element and isotopic studies of the identified magma types reveal a complex history of fractionation and contamination at different lithospheric levels. All extrusive rock types show evidence of crustal contamination but this had rather small impact on their diagnostic trace element ratios. Much stronger overprint, in the CT1 and CT2 suites, resulted from contamination with veined Archaean lithospheric mantle, which produced wide ranges of isotopic and highly incompatible element ratios. CT3, in turn, does not show evidence of interaction with the Proterozoic lithospheric mantle. The high-εNd endmembers of CT1, CT2 and CT3 probably closely resemble uncontaminated mantle-derived magmas and indicate three different mantle sources. The CT2 primary magmas were derived from light rare earth element (LREE)-depleted, slightly large ion lithophile element (LILE)-enriched sources, whereas data on the volumetrically preponderant CT1 and CT3 point to variably LREE-enriched, strongly LILE-enriched sources. The sources of CT1, CT2 and CT3 may record large-scale lateral heterogeneity generated by subduction-contamination of the Gondwanan upper mantle. The OIB-like CT4 dykes probably reflect asthenospheric heterogeneities that were unrelated to the proposed subduction-contamination.

Last update from database: 3/1/25, 3:17 AM (UTC)