Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Your search

Topic

Results 5 resources

  • Ice shelves around Antarctica can provide back stress for outlet glaciers and control ice sheet mass loss. They often contain narrow bands of thin ice termed ice shelf channels. Ice shelf channel morphology can be interpreted through surface depressions and exhibits junctions and deflections from flowlines. Using ice flow modeling and radar, we investigate ice shelf channels in the Roi Baudouin Ice Shelf. These are aligned obliquely to the prevailing easterly winds. In the shallow radar stratigraphy, syncline and anticline stacks occur beneath the upwind and downwind side, respectively. The structures are horizontally and vertically coherent, except near an ice shelf channel junction where patterns change structurally with depth. Deeper layers truncate near basal incisions. Using ice flow modeling, we show that the stratigraphy is ∼9 times more sensitive to atmospheric variability than to oceanic variability. This is due to the continual adjustment toward flotation. We propose that syncline-anticline pairs in the shallow stratigraphy are caused by preferential snow deposition on the windward side and wind erosion at the downwind side. This drives downwind deflection of ice shelf channels of several meters per year. The depth variable structures indicate formation of an ice shelf channel junction by basal melting. We conclude that many ice shelf channels are seeded at the grounding line. Their morphology farther seaward is shaped on different length scales by ice dynamics, the ocean, and the atmosphere. These processes act on finer (subkilometer) scales than are captured by most ice, atmosphere, and ocean models, yet the dynamics of ice shelf channels may have broader implications for ice shelf stability.

  • To investigate the role of tides in Weddell Sea ocean-ice shelf melt interactions, and resulting consequences for ocean properties and sea ice interactions, we develop a regional ocean-sea ice model configuration, with time-varying ocean boundary and atmospheric forcing, including the deep open ocean (at 2.5–4 km horizontal resolution), the southwestern continental shelf (≈2.5 km), and the adjacent cavities of eastern Weddell, Larsen, and Filchner-Ronne ice shelves (FRIS, 1.5–2.5 km). Simulated circulation, water mass, and ice shelf melt properties compare overall well with available open ocean and cavity observational knowledge. Tides are shown to enhance the kinetic energy of the time-varying flow in contact with the ice shelves, thereby increasing melt. This dynamically driven impact of tides on net melting is to almost 90% compensated by cooling through the meltwater that is produced but not quickly exported from regions of melting in the Weddell Sea cold-cavity regime. The resulting systematic tide-driven enhancement of both produced meltwater and its refreezing on ascending branches of, especially the FRIS, cavity circulation acts to increase net ice shelf melting (by 50% in respect to the state without tides, ≈50 Gt yr−1). In addition, tides also increase the melt-induced FRIS cavity circulation, and the meltwater export by the FRIS outflow. Simulations suggest attendant changes on the open-ocean southwestern continental shelf, characterized by overall freshening and small year-round sea ice thickening, as well as in the deep southwestern Weddell Sea in the form of a marked freshening of newly formed bottom waters.

  • Energetic electron precipitation (EEP) is an important source of polar nitrogen oxides (NOx) in the upper atmosphere. During winter, mesospheric NOx has a long chemical lifetime and is transported to the stratosphere by the mean meridional circulation. Climate change is expected to accelerate this circulation and therefore increase polar mesospheric descent rates. We investigate the Southern Hemispheric polar NOx distribution during the 21st century under a variety of future scenarios using simulations of the Whole Atmosphere Community Climate Model (WACCM). We simulate stronger polar mesospheric descent in all future scenarios that increase the atmospheric radiative forcing. Polar NOx in the upper stratosphere is significantly enhanced in two future scenarios with the largest increase in radiative forcing. This indicates that the ozone depleting NOx cycle will become more important in the future, especially if stratospheric chlorine species decline. Thus, EEP-related atmospheric effects may become more prominent in the future.

  • The Filchner-Ronne Ice Shelf, fringing the southern Weddell Sea, is Antarctica's second largest ice shelf. At present, basal melt rates are low due to active dense water formation; however, model projections suggest a drastic increase in the future due to enhanced inflow of open-ocean warm water. Mooring observations from 2014 to 2016 along the eastern flank of the Filchner Trough (76°S) revealed a distinct seasonal cycle with inflow if Warm Deep Water during summer and autumn. Here we present extended time series showing an exceptionally warm and long inflow in 2017, with maximum temperatures exceeding 0.5°C. Warm temperatures persisted throughout winter, associated with a fresh anomaly, which lead to a change in stratification over the shelf, favoring an earlier inflow in the following summer. We suggest that the fresh anomaly developed upstream after anomalous summer sea ice melting and contributed to a shoaling of the shelf break thermocline.

  • Microcontinents and continental fragments are small pieces of continental crust that are surrounded by oceanic lithosphere. Although classically associated with passive margin formation, here we present several preserved microcontinents and continental fragments associated with subduction systems. They are located in the Coral Sea, South China Sea, central Mediterranean and Scotia Sea regions, and a “proto-microcontinent,” in the Gulf of California. Reviewing the tectonic history of each region and interpreting a variety of geophysical data allows us to identify parameters controlling the formation of microcontinents and continental fragments in subduction settings. All these tectonic blocks experienced long, complex tectonic histories with an important role for developing inherited structures. They tend to form in back-arc locations and separate from their parent continent by oblique or rotational kinematics. The separated continental pieces and associated marginal basins are generally small and their formation is quick (<50 Myr). Microcontinents and continental fragments formed close to large continental masses tend to form faster than those created in systems bordered by large oceanic plates. A common triggering mechanism for their formation is difficult to identify, but seems to be linked with rapid changes of complex subduction dynamics. The young ages of all contemporary pieces found in situ suggest that microcontinents and continental fragments in these settings are short lived. Although presently the amount of in-situ subduction-related microcontinents is meager (an area of 0.56% and 0.28% of global, non-cratonic, continental crustal area and crustal volume, respectively), through time microcontinents contributed to terrane amalgamation and larger continent formation.

Last update from database: 3/1/25, 3:17 AM (UTC)