Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 45 resources
-
Geodetic measurements of the vertical crustal displacement collocated with absolute gravity changes provide a discriminatory measurement of present-day glacial changes, versus more deeply seated rock motions caused by glacial isostatic adjustment (GIA). At the East Antarctic station of Dumont d’Urville, we compare the displacements derived from continuous DORIS (1993.0– 2006.0) and Global Positioning System (GPS) (1999.0–2005.7) data, and observed changes in absolute gravity (2000–2006), with the predicted vertical displacement and change in gravity from GIA modelling. The geodetic results have mutual self-consistency, suggest station stability and provide upper bounds on both GIA and secular ice mass changes. The GIA models tend to predict amplitudes of rock motion larger than those observed, and we conclude that this part of Antarctica is probably experiencing a slight gain in ice mass, in contrast to West Antarctica.
-
[1] Ground-based accumulation measurements are scarce on the high East Antarctic plateau, but highly necessary for model validation and the interpretation of satellite data for the determination of Antarctic mass balance. Here, we present accumulation results obtained from four shallow firn cores drilled in the Antarctic summer season 2007/2008. The cores were drilled along the first leg of the Norwegian-US IPY traverse through East Antarctica, visiting sites like Plateau Station and Pole of Relative Inaccessibility that have been covered by the South Pole Queen Maud Land Traverses (SPQMLT) in the 1960s. Accumulation has been determined from volcanic chronology established from the conductivity records measured by dielectric profiling (DEP). The Tambora 1815/unknown 1809 double peak is clearly visible in the conductivity data and serves as a reliable time marker. Accumulation rates averaged over the period 1815–2007 are in the range of 16 to 32 kg m−2 a−1, somewhat lower than expected from the SPQMLT data. The spatial pattern is mainly influenced by elevation and continentality. Three of the firn cores show a decrease of more than 20% in accumulation for the time period 1815–2007 in relation to accumulation rates during the period 1641–1815. The spatial representativity of the firn cores is assessed by ground-penetrating radar, showing a rather smoothly layered pattern around the drill sites. Validation of the DEP results is utilized by comparison with chemistry data, proving the validity of the DEP method for dating firn cores. The results help understanding the status of the East Antarctic ice sheet and will be important for e.g. future model-derived estimates of the mass balance of Antarctica.
-
Shipboard hydrography and current profiles collected in 2003 and time series from moored current meters deployed in late 1990s are analyzed to study the variability of mixing in the southeastern Weddell Sea. Profiles of eddy diffusivity Kρ are inferred from fine-scale shear (vertical derivative of horizontal velocity) and strain (vertical derivative of isopycnal displacement) variance using parameterizations which relate the internal wave energy to the dissipation rate at small scales. The highest mixing rates are seen near the bottom where the eddy diffusivities are elevated by 1 order of magnitude from those in the interior and exceed 10−4 m2 s−1. The observations show latitudinal variability in Kρ, particularly near the bottom, where Kρ significantly increases near 74° 28′S, the critical latitude for lunar semidiurnal (M2) tides. In this region, the critical latitude coincides with near-critical topography on the upper continental slope, a situation which favors generation of M2 internal waves. Consistent with the results from fine-scale shear and strain parameterizations, which indicate highest bottom diffusivities near the critical latitude, independent analysis of current time series from moored instruments shows a thickening of the frictional bottom boundary layer near the critical latitude. Semidiurnal tidal dynamics at the upper continental slope together with the critical latitude effects lead to mixing that might significantly affect the regional heat budget and the circulation in the study area.
-
This report summaries the first workshop of the Southern Ocean Observing System (SOOS) Weddell Sea and Dronning Maud Land (WS-DML) Regional Working Group held Tromsø, Norway, in January 2019.
-
We use a network of eight ice cores from coastal Dronning Maud Land (DML), Antarctica, to examine the role of the tropical ENSO (El Niño-Southern Oscillation) in the temporal variability of δ18O in annual accumulation. The longest record from the S100 ice core covering the period 1737–1999 is used to analyze the teleconnections between the tropical Pacific and coastal DML on decadal scales and longer. A shorter stacked coastal DML δ18O series spanning 1955–1999 is constructed to assess the variability of ENSO teleconnection on interannual scales. Results suggest that, on typical ENSO timescales of 2–6 years, the strength of the teleconnection varies in time, being stronger for years with generally negative phase of the Southern Annular Mode (SAM). On the timescales of approximately two decades (bidecadal), positive isotope anomalies are associated with oceanic warming and a westward sea surface temperature (SST) gradient in the equatorial Pacific. Bidecadal variability in SAM, forced by the tropical Pacific, is proposed as a critical element in the teleconnection. Our analysis suggests that a multidecadal positive trend in the annual mean δ18O values from the analyzed cores can be indicative of the atmospheric warming that begun in this part of the DML already in the 1910s. The trend in δ18O, quantified in terms of long-term surface air temperature (SAT) changes, is consistent with the instrumental data. Yet, we speculate that the accurate estimation of SAT trends requires an assessment of the potential role of secular SAM and sea ice extent changes in shaping the isotopic signal.
-
Alteration halos with sharp boundaries are flanking pegmatitic veins in high-grade metamorphic and magmatic rocks of Dronning Maud Land, Antarctica. These halos are interpreted to represent the damage zone, formed as the wake of the process zone at the tip of the propagating magma-filled fracture and infiltrated by the fluid phase liberated from the crystallizing hydrous melt. On the basis of a set of assumptions, our numerical model explores the time scales of the infiltration processes, taking into account the combined effects of fluid flow, heat transfer, and temperature-dependent decay of interconnected porosity due to microcrack healing. Assuming an initial magma temperature of 700°C, a far field temperature in the host rock of 300°C, an initial porosity range of 0.5–2% in the damage zone, a permeability of 10−16 m2, and a pressure difference of 300 MPa, we find that the fluid infiltration into the damage zone proceeds within seconds to minutes and that the fluid flow contributes significantly to the heat transfer into the host rock. Assuming an initial microcrack aperture of 1 μm, the model predicts that the crack healing time scale is significantly longer than that of fluid infiltration in the case of thin veins with narrow damage zones; in this case, crack healing does not hinder fluid infiltration. Only for thick veins with high heat content and prolonged crystallization history does permeability become reduced by crack healing during progressive fluid infiltration. The results indicate that the formation of the alteration halos flanking pegmatitic veins may be a quasi-instantaneous process on geological time scales.
-
The acquisition and interpretation of increasingly high-resolution climate data from polar ice and firn cores motivates the question: What is the finest depth or timescale on which measurements on cores arrayed over a given area correlate? We analyze dated depth series of electrical and oxygen isotope measurements from a spatial array of firn cores with 3.5–7 km spacing in Dronning Maud Land, Antarctica, each with a temporal span of approximately 200 years. We use wavelet analysis to decompose the series into components associated with changes of averages on different scales, and thus deduce which scales are dominated by environmental noise, and which may contain a common signal. We find that common signals in electrical records have timescales of approximately 1–3 years. We identify only one electrical signal which rises significantly above the background in our 200-year records, evidently corresponding to the Tambora eruption. Several smaller signals correlate in a few of pairs of cores, one of which may correspond to a known volcanic event, but the others appear to be spurious. We present a simulation-based method for testing the significance of apparent electrical signal correlations, and highlight the importance of accurate relative dating between cores. In the case of oxygen-isotope records, we find, surprisingly, no significant correlation on any scale in the records, for any of the pairs of cores. There is, however, a weak trend toward positive correlation at longer timescales (up to 16 years). Statistical theory for the relevant confidence intervals and the observed statistics of the records permit estimation of the length of a data series necessary to reliably detect a hypothetical correlation equal to that observed. For the highest correlation observed on 16-year scales, core records of about 380 years (approximately 30 m at the Dronning Maud Land site) would be necessary to establish significance.
-
Model simulations of circulation and melting beneath Fimbulisen, Antarctica, obtained using an isopycnic coordinate ocean model, are presented. Model results compare well with available observations of currents and hydrography in the open ocean to the north of Fimbulisen and suggest that Warm Deep Water exists above the level of a sub-ice-shelf bedrock sill, the principal pathway for warm waters to enter the sub-ice-shelf cavity. The model shows a southward inflow of Warm Deep Water over this sill and into the cavity, producing a mean cavity temperature close to −1.0°C. This leads to high levels of basal melting (>10 m/a) at the grounding line of Jutulstraumen and an average melting over the ice shelf base close to 1.9 m/a. The southward inflow is a compensating flow caused by the northward outflow of fresh, cold water produced by the basal melting. Results on inflow and melting are difficult to validate since no in situ measurements yet exist in the cavity. If such high melt rates are realistic, the mass balance of Fimbulisen must be significantly negative, and the ice shelves along Dronning Maud Land must contribute about 4.4 mSv of melt water to the Weddell Sea, about 15% of the total Antarctic meltwater input to the Southern Ocean.
-
Drift and variability of sea ice in the Amundsen Sea are investigated with ice buoys deployed in March 2000 and a coupled ice-ocean model. The Bremerhaven Regional Ice Ocean Simulations (BRIOS) model results are compared with in situ ocean, atmosphere, and sea ice measurements; satellite observations; and 8?19 months of buoy drift data. We identify a zone of coastal westward drift and a band of faster eastward drift, separated by a broad transition region characterized by variable ice motions. The model represents drift events at scales approaching its resolution but is limited at smaller scales and by deficiencies in the National Centers for Environmental Prediction forcing. Two thirds of the modeled ice production in the southern Amundsen moves westward near the coast, its transport modulated by meridional wind strength, damping sea ice formation in the eastern Ross Sea. Half of the ice exported from the Ross moves eastward into the northern Amundsen Sea, a net sea ice sink that also receives more than one third of the ice generated to its south. A low rate of exchange occurs with the Bellingshausen Sea, which must have a more independent ice regime. Snow ice formation resulting from high precipitation accounts for one quarter of the ice volume in the Amundsen Sea, aiding the formation of thick ice in a region with generally divergent ice drift. Freshwater extraction by sea ice formation is roughly balanced by precipitation and ice shelf melting, but a positive trend in the surface flux is consistent with an Amundsen source for reported freshening in the Ross Sea.
-
Conveyor belt circulation controls global climate through heat and water fluxes with atmosphere and from tropical to polar regions and vice versa. This circulation, commonly referred to as thermohaline circulation (THC), seems to have millennium time scale and nowadays-a non-glacial period-appears to be as rather stable. However, concern is raised by the buildup Of CO2 and other greenhouse gases in the atmosphere (IPCC, Third assessment report: Climate Change 2001, A contribution of working group I, II and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, UK) 2001, http://www.ipcc.ch) as these may affect the THC conveyor paths. Since it is widely recognized that dense-water formation sites act as primary sources in strengthening quasi-stable THC paths (Stommel H., Tellus, 13 (1961) 224), in order to simulate properly the consequences of such scenarios a better understanding of these oceanic processes is needed. To successfully model these processes, air-sea-ice-integrated modelling approaches are often required. Here we focus on two polar regions using the Regional Ocean Modeling System (ROMS). In the first region investigated, the North Atlantic-Arctic, where open-ocean deep convection and open-sea ice formation and dispersion under the intense air-sea interactions are the major engines, we use a new version of the coupled hydrodynamic-ice ROMS model. The second area belongs to the Antarctica region inside the Southern Ocean, where brine rejections during ice formation inside shelf seas origin dense water that, flowing along the continental slope, overflow becoming eventually abyssal waters. Results show how nowadays integrated-modelling tasks have become more and more feasible and effective; numerical simulations dealing with large computational domains or challenging different climate scenarios can be run on multi-processors platforms and on systems like LINUX clusters, made of the same hardware as PCs, and codes have been accordingly modified. This relevant numerical help coming from the computer science can now allow scientists to devote larger attention in the efforts of understanding the deep mechanisms of such complex processes.
-
Information about the spatial variations of snow properties and of annual accumulation on ice sheets is important if we are to understand the results obtained from ice cores, satellite remote sensing data and changes in climate patterns. The layer structure and spatial variations of physical properties of surface snow in western Dronning Maud Land were analysed during the austral summers 1999/2000, 2000/01 and 2003/04 in fi ve different snow zones. The measurements were performed in shallow (1 - 2 m) snow pits along a transect extending 350 km from the seaward edge of the ice shelf to the polar plateau. These pits covered at least the last annual accumulation and ranged in elevation from near sea level to 2500 m a.s.l. The ?18O values and accumulation rates had a good linear correlation with the distance from the coast. The mean accumulation on the ice shelf was 312 ± 28 mm water equivalent (w.e.); in the coastal region it was 215 ± 43 mm w.e. and on the polar plateau it was 92 ± 25 mm w.e. The mean annual conductivity and grain size values decreased exponentially with increasing distance from the ice edge, by 48 %/100 km and 18 %/100 km respectively. The mean grain size varied between 1.5 and 1.8 mm. Depth hoar layers were a common phenomenon, especially under thin ice crusts, and were associated with low dielectric constant values.
-
The present paper provides an overview of glacial related seabed features and sedimentary sequences found along the formerly glaciated NW European margin and compare it with those found on contemporary glaciated margins from both the Southern and Northern Hemispheres. A brief review of the seabed physiography and strata architecture of the margins under consideration is followed by comparison of the most relevant similarities and differences. Comparison of the present-day bathymetric setting of both former and contemporary glaciated margins reveals no clear link to the effect of neither ice sheet or sediment load. Three different types of glacially eroded shelf transverse troughs have been identified, while marginal troughs seem connected to similar geological settings everywhere. Beyond the shelf edge interaction between downslope and alongslope processes has occurred resulting, amongst others, in the formation of large sedimentary mounds on the rise. More frequent large-scale mass wasting occurs on the former glaciated NW European margin than the Greenland and Antarctic margins in the latest Neogene to recent times. A two-stage evolution of the shelf prograding wedges is observed on all margins under consideration, which may reflect a general development of an ice cover from an initial phase of non- to restricted glaciation, evolving to a mature stage of expansive glaciation.
-
This paper presents the results of the numerical simulation of drifting snow surrounding a simple 2m cubicle structure. These results are compared and verified against data from snow drifting experimental tests carried out at SANAE IV research station, Antarctica, during the summer research period of January 2002. In addition to the snow drifting field observations, wind profile data were also obtained from cup-type anemometers mounted on a 6m wind mast. These data were employed to derive the characteristic surface roughness, shear velocity and approaching wind profile functions. The present work numerically simulates a transient three-dimensional turbulent viscous flow in an Eulerian coordinate frame including snow advection. A modified turbulent wall law is employed that accounts for the effects of snow saltation on the effective aerodynamic surface roughness. The numerical simulation employed the commercial CFD code, FLOW-3D, with additional user Fortran coding added to model the snow entrainment, subsequent accumulation or erosion of snow as well as temporal snow surface changes. The snow accumulation and erosion model is presented and discussed. The snow accumulation predicted by this numerical simulation compares favourably with the experimental results obtained from the Antarctica field testing.
-
Holocene and slightly pre-Holocene submarine landslide are found both in high-latitude glacial-dominated margins and in lower latitude, river-dominated margins. This paper constitutes a major assessment on some of the best-studied submarine instabilities in the world. We review and update from original data and literature reports the current state of knowledge of Storegga, Traenadjupet and Finneidfjord slides from the mid-Norwegian margin, Afen Slide from the Faeroe-Shetland Channel, BIG'95 Slide and Central Adriatic Deformation Belt (CADEB) from continental slope and inner continental shelf settings off the Ebro and Po rivers in the Mediterranean Sea, Canary Slide west of the westernmost, youngest Canary Islands and Gebra Slide off the northern tip of the Antarctic Peninsula in the southern hemisphere, i.e. those studied in the Continental Slope Stability (COSTA) project. The investigated slides range in size from the gigantic 90,000 km2 and almost 3000 km3 Storegga Slide to the tiny 1 km2 and 0.001 km3 Finneidfjord Slide. Not only do individual submarine landslides rarely involve processes precisely fitting with pre-established categories, mostly based on subaerial research, but also they display complex mechanical behaviors within the elastic and plastic fields. Individual events can involve simultaneous or successive vertical to translational movements including block detachment, block gliding, debris flow, mud flow and turbidity currents. The need for an in-depth revision of the classification criteria, and eventually for a new classification system, based on the new imaging capabilities provided by modern techniques, is more than obvious. We suggest a new system, which, for the moment, is restricted to debris flows and debris avalanches. Volume calculation methods are critically reviewed and the relations between some key geomorphic parameters are established for the selected slides. The assumed volume missing from scar areas does not necessarily match the actual volume of sediment remobilised by an individual event since in situ sediment can be remoulded and eventually incorporated during the slide downslope journey. CADEB, a shore-parallel prodelta detached from its source, is the exception to the good correlation found between across slope width and alongslope length with slide area. Height drop measured from the headwall upper rim to its foot correlates with the debris deposit maximum thickness unless the slide moves into restricted areas, which prevent farther forward expansion of the deposit, such as Gebra and BIG'95. In such cases, “over-thickened” deposits are found. A particularly loose and fluid behavior can be deduced for slides showing an “over-thinned” character, such as the Canary Slide that traveled 600 km. Scar areas and slip planes have been investigated with particular emphasis. Although slide headwalls might present locally steep gradients (up to 23° for Storegga Slide), the slope gradients of both the failed segment margins and the main slip planes are very low (max. 2° and usually around 1° and less). An exception is the Finneidfjord Slide (20°–<5°) that occurred in 1996 because of a combination of climatic and anthropogenic factors leading to excess pore pressure and failure. Mechanically distinct, low permeable clayey “weak layers” often correspond to slip planes beyond the slide headwall. Since not only formation of these “weak layers” but also sedimentation rates are climatically controlled, we can state that slide pre-conditioning is climatically driven too. Run-out distances reflect the degree of disintegration of the failed mass of sediment, the total volume of initially failed material and transport mechanisms, including hydroplanning. Commonly, specific run-outs could be attributed to distinct elements, such as cohesive blocks and looser matrix, as nicely illustrated by the BIG'95 Slide. Total run-outs usually correspond to matrix run-outs since the coarser elements tend to rest at shorter distances. Outrunner blocks are, finally, a very common feature proving the ability of those elements to glide over long distances with independence of the rest of the failed mass. In addition to pre-conditioning factors related to geological setting and sedimentation conditions, a final trigger is required for submarine landslides to take place, which is most often assumed to be an earthquake. In high latitude margins, earthquake magnitude intensification because of post-glacial isostatic rebound has likely played a major role in triggering landslides. Although it cannot be totally ruled out, there is little proof, at least amongst the COSTA slides, that gas hydrate destabilisation or other processes linked to the presence of shallow gas have acted as final triggers.
-
The Miami Isopycnic Coordinate Ocean Model (MICOM) is used to investigate the effect of diapycnal mixing on the oceanic uptake of CFC-11 and the ventilation of the surface waters in the Southern Ocean (south of 45°S). Three model experiments are performed: one with a diapycnal mixing coefficientKd (m2 s−1) of 2 × 10−7/N (Expt. 1), one withKd = 0 (Expt. 2), and one withKd = 5 × 10−8/N (Expt. 3),N (s−1) is the Brunt-Väisälä frequency. The model simulations indicate that the observed vertical distribution of CFC-11 along 88°W (prime meridian at 0°E) in the Southern Ocean is caused by local ventilation of the surface waters and westward-directed (eastward-directed) isopycnic transport and mixing from deeply ventilated waters in the Weddell Sea region. It is found that at the end of 1997, the simulated net ocean uptake of CFC-11 in Expt. 2 is 25% below that of Expt. 1. The decreased uptake of CFC-11 in the Southern Ocean accounts for 80% of this difference. Furthermore, Expts. 2 and 3 yield far more realistic vertical distributions of the ventilated CFC-waters than Expt. 1. The experiments clearly highlight the sensitivity of the Southern Ocean surface water ventilation to the distribution and thickness of the simulated mixed layer. It is argued that inclusion of CFCs in coupled climate models could be used as a test-bed for evaluating the decadal-scale ocean uptake of heat and CO2.
-
This paper presents an overview of firn accumulation in Dronning Maud Land (DML), Antarctica, over the past 1000 years. It is based on a chronology established with dated volcanogenic horizons detected by dielectric profiling of six medium-length firn cores. In 1998 the British Antarctic Survey retrieved a medium-length firn core from western DML. During the Nordic EPICA (European Project for Ice Coring in Antarctica) traverse of 2000/01, a 160 m long firn core was drilled in eastern DML. Together with previously published data from four other medium-length ice cores from the area, these cores yield 50 possible volcanogenic horizons. All six firn cores cover a mutual time record until the 29th eruption. This overlapping period represents a period of approximately 1000 years, with mean values ranging between 43 and 71 mm w.e. The cores revealed no significant trend in snow accumulation. Running averages over 50 years, averaged over the six cores, indicate temporal variations of5%. All cores display evidence of a minimum in the mean annual firn accumulation rate around AD 1500 and maxima around AD 1400 and 1800. The mean increase over the early 20th century was the strongest increase, but the absolute accumulation rate was not much higher than around AD 1400. In eastern DML a 13% increase is observed for the second half of the 20th century.
-
The ocean cavity beneath Filchner-Ronne Ice Shelf is observed to respond to the seasonal cycle of water mass production on the continental shelf of the southern Weddell Sea. Here we use a numerical model to investigate the propagation of newly formed shelf waters into the cavity. We find that the model reproduces the most distinctive features of the observed seasonality and offers a plausible explanation for those features. The most saline shelf waters are produced in the far west, where the inflow to the cavity peaks twice each year. The major peak occurs during the short period around midwinter when convection reaches full depth and the densest waters are generated. Once the surface density starts to decline, dynamic adjustment of the restratified water column leads to a gradual fall in the salinity at depth and a secondary peak in the inflow that occurs in summer at the western coast. Beneath the ice shelf the arrival of the wintertime inflow at the instrumented sites is accompanied by a rapid warming, while the slower decline in the inflow leads to a more gradual cooling. Water brought in by the secondary, summer peak flows mainly to the eastern parts of the cavity. Here the seasonality is suppressed because the new inflows mix with older waters that recirculate within a topographic depression. This pooling of waters in the east, where the primary outflow of Ice Shelf Water is generated, dampens the impact of seasonality on the local production of Weddell Sea Bottom Water.
-
A 100 m long ice core was retrieved from the coastal area of Dronning Maud Land (DML), Antarctica, in the 2000/01 austral summer. The core was dated to AD 1737 by identification of volcanic horizons in dielectrical profiling and electrical conductivity measurement records in combination with seasonal layer counting from high-resolution oxygen isotope (δ18O) data. A mean long-term accumulation rate of 0.29 ma–1w.e. was derived from the high-resolution δ18O record as well as accumulation rates during periods in between the identified volcanic horizons. A statistically significant decrease in accumulation was found from about 1920 to the present. A comparison with other coastal ice cores from DML suggests that this is a regional pattern.
-
Firn air was sampled on the Antarctic plateau in Dronning Maud Land (DML), during the Norwegian Antarctic Research Expedition (NARE) 2000/2001. In this paper, we describe the analyses for methyl chloride and nonmethane hydrocarbons (NMHCs) in these firn air samples. For the first time, the NMHCs ethane, propane, and acetylene have been measured in Antarctic firn air, and concentration profiles for these gases have been derived. A one-dimensional numerical firn air diffusion model was used to interpret the measured profiles and to derive atmospheric concentrations as a function of time. The atmospheric trends we derived for the NMHC and methyl chloride at DML cover the period from 1975 to 2000. Methyl chloride shows a decreasing trend of 1.2 ± 0.6 ppt per year (annual mean concentration 548 ± 32 ppt). For ethane we found an increasing trend of 1.6 ± 0.6 ppt per year (annual mean concentration 241 ± 12 ppt). The concentrations of propane and acetylene appear to be constant over the period 1975–2000, with annual mean concentrations of 30 ± 4 ppt for propane and 24 ± 2 ppt for acetylene.
Explore
Topic
- geofysikk
- AABW (2)
- akkumulasjon (1)
- Amundsenhavet (1)
- Antarktis (18)
- antropogenisk CO2 (1)
- atmosfæren (5)
- batymetri (1)
- biogeokjemi (1)
- blåis (1)
- breendringer (1)
- bunnvann (1)
- drivhusgasser (1)
- Dronning Maud Land (15)
- ekspedisjoner (2)
- fjernmåling (1)
- forskning (1)
- forskningsstasjoner (1)
- fytoplankton (1)
- gasskonsentrasjoner (2)
- geodesi (1)
- geografi (1)
- geokjemi (1)
- geologi (4)
- geomagnetiske stormer (2)
- glasiologi (10)
- havbunnen (1)
- havis (3)
- havnivå (1)
- havstrømmer (4)
- historie (1)
- hydrografi (2)
- ingeniørvitenskap (1)
- innlandsis (6)
- ionosfæren (2)
- is radar (1)
- isbreer (1)
- isfront (1)
- iskjerner (6)
- isshelf (5)
- karbondioksid (1)
- klima (1)
- klimaendringer (1)
- klimagasser (1)
- klimamodeller (3)
- klimatologi (6)
- konferanse (1)
- kontinentalmargin (1)
- kontinentalsokkel (1)
- laboratorieeksperimenter (1)
- logistikk (1)
- marin biologi (1)
- marin geologi (3)
- mekanikk (1)
- meteorologi (9)
- miljøendringer (2)
- mineralogi (1)
- NARE 2000/01 (3)
- numerisk modellering (2)
- observasjoner (1)
- oseanografi (15)
- overflatesnø (1)
- ozonhull (1)
- ozonlaget (2)
- paleoklimatologi (2)
- polarområdene (7)
- radioaktivitet (1)
- Rosshavet (1)
- satellitt (1)
- satellitt observasjoner (1)
- sedimenter (1)
- seismologi (1)
- sjøis (2)
- snø akkumulasjon (1)
- snø radar (1)
- Sørishavet (15)
- stratigrafi (2)
- strømmodeller (1)
- symposium (1)
- tektonikk (1)
- tidevannsmålinger (1)
- tidsserieanalyse (1)
- topografi (1)
- vannmasser (2)
- vannvirvler (1)
- vulkaner (1)
- Weddellhavet (10)
Resource type
- Book Section (3)
- Journal Article (41)
- Report (1)