Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 50 resources
-
A number of campaigns have been conducted in order to study Polar Mesosphere Summer Echos (PMSE) and Noctilucent Clouds (NLC) in the period 1991–1994. Several sounding rockets have been launched through these layers with measurements being performed on upleg as well as downleg. These include measurements of positive ions and electrons in both ram and wake positions, as well as measurements of charged aerosols in ram on upleg. In this paper we will review these measurements and make a preliminary classification of the data based upon the presence of PMSE and/or NLC. One of the mechanisms responsible for PMSE is the presence of neutral air turbulence in combination with a high Schmidt number. We will briefly discuss this type of echo using in situ rocket data. Differences and similarities of PMSE and NLC as observed both in the Arctic and the Antarctic will be discussed. Observations show that especially PMSE are much more frequent in the Arctic. This may be due to a difference in the water vapour content or the temperature at mesopause heights. Lack of data in the Antarctic makes it difficult to decide which of these two factors are the most important. More measurements, especially co-ordinated in situ and ground-based lidar and radar measurements, are needed to discuss the Arctic and Antarctic similarities and differences in further detail.
-
In the Jutulgryta area of Dronning Maud Land, Antarctica, subsurface melting of the ice sheet has been observed. The melting takes place during the summer months in blue-ice areas under conditions of below-freezing air and surface temperatures. Adjacent snow-covered regions, having the same meteorological and climatic conditions, experience little or no subsurface melting. To help explain and understand the observed melt-rate differences in the blue-ice and snow-covered areas, a physically based numerical model of the coupled atmosphere, radiation, snow and blue-ice system has been developed. The model comprises a heat-transfer equation which includes a spectrally dependent solar-radiation source term. The penetration of radiation into the snow and blue ice depends on the solar-radiation spectrum, the surface albedo and the snow and blue-ice grain-sizes and densities. In addition, the model uses a complete surface energy balance to define the surface boundary conditions. It is run over the full annual cycle, simulating temperature profiles and melting and freezing quantities throughout the summer and winter seasons. The model is driven and validated using field observations collected during the Norwegian Antarctic Research Expedition (NARE) 1996–97. The simulations suggest that the observed differences between subsurface snow and blue-ice melting can be explained largely by radiative and heat-transfer interactions resulting from differences in albedo, grain-size and density between the two mediums.
-
The paper presents a new global modeling tool, Stratospheric Chemical Transport Model 2. It has been developed for effective three-dimensional multiyear stratospheric chemistry studies, featuring an extensive chemistry scheme, heterogeneous processing on sulfate aerosols, and some polar stratospheric cloud processes. The transport algorithm maintains sub-grid-scale distributions and connects vertically the stratospheric layers, even in a coarse vertical grid. The model has been integrated for 49 months, recycling 1 year of precalculated transport from a middle atmosphere general circulation model. One year of daily National Centers for Environmental Prediction global analyses are used as temperatures. Diurnal cycles of photolysis rates are recalculated every 7 days to give interaction with ozone changes. The model is able to describe most of the geographical and seasonal ozone variability and the meridional distributions of ozone, reactive nitrogen, chlorine, and bromine. Stratospheric diurnal cycles for nitrogen, hydrogen, chlorine, and bromine species are captured in detail. The upper stratosphere ozone deficiency, typical to models, is large. Its sensitivity to different ways of tuning are explored. Midlatitude, rather than polar, wintertime processes have so far been the focus in this model tool. The present transport and grid resolution are not suited for realistic simulations at high latitudes. As there is only a limited inclusion of polar stratospheric cloud (PSC) microphysics, chemical processing in the cold polar lower stratosphere also cannot be well simulated. For example, the Antarctic ozone hole is not simulated, but the modeled chemistry should be suitable for warm Arctic winters when type II PSCs and particle sedimentation do not occur.
-
The mass balance of the Antarctic ice cap, its stability, and the role of the surrounding ice shelf in bottomwater mass formation is, to a large extent, dictated by processes associated with subsurface freezing and melting, where the submerged ice meets the surrounding ocean. It is demonstrated how multifrequency ground-penetrating radar data collected at the Riiser-Larsenisen can be used to examine the physical conditions of the ice-shelf subsurface. The received radar signal from three different frequency intervals, 10-30, 155-170, and 330-360 MHz (range of wavelengths from 15 to 0.5 m in the ice), was analyzed by using a plane reflector model. It is demonstrated that the data can be successfully used to distinguish between types of ice at the ice-ocean interface, such as for freezing marine ice, melting marine ice, melting meteoric ice from the ice cap, and melting firn/ice. The data analysis shows that the subsurface can be regarded as rough on length scales in the order of 1 m.
-
A mass-balance programme was initiated on Jutulstraumen ice stream, western Dronning Maud Land,Antarctica, during the austral summer 1992-93. As a part of the mass-balance programme, accumulation rate was measured along the centre line of Jutulstraumen from the shelf edge up to the plateau at about 2500 m a.s.l. Accumulation distribution obtained from seven shallow firn cores and 48 slake readings is presented. The overall net accumulation trend displays a decreasing accumulation with increasing elevation and distance to coast, but on both the mesoscale and microscale there are significant variations. This is due to complex patterns of precipitation controlled by orography and redistribution by katabatic winds. The local accumulation distribution (few km scale) was found to be dependent on downslope surface gradient (aspect north, northwest), and variations up to 100% were found over distances of less than 3 km. The large variation in accumulation is important when selecting new core sites and for interpretation of temporal and spatial variations in accumulation derived from firn cores.
-
The stabilities of two different circulation regimes in the North Atlantic, 1) the present thermohaline circulation and 2) a weaker thermohaline circulation, are compared using the Hamburg Large Scale Geostrophic (LSG) ocean circulation model. The latter circulation regime is obtained by restoring the LSG model toward an on average 48C warmer air surface temperature corresponding to a doubled atmospheric content of CO 2 . The stabilities of these stationary states are investigated by imposing various amounts of stochastic noise on the surface freshwater flux. The simulations show more variability on secular timescales for the present than for the warm climate. Since the modeled static stabilities for the two climates are relatively similar, the different rates of variability are probably connected to other mechanisms. In the present climate at high latitudes the two buoyancy fluxes due to heat and freshwater are of similar magnitudes but with opposite signs; thus switches between convective and nonconvective periods at secular timescales are possible. In the warm climate the buoyancy flux due to heat dominates. This compensates the effect of the noisy freshwater forcing and thus reduces the potential for secular oscillations. The stronger coupling between the Atlantic and the Southern Ocean for the present relative to the warm climate could also contribute to this difference. Furthermore, the simulations show that the variability of the Antarctic Circumpolar Current transport for the present climate exceeds that of the warm climate. For increasing stochastic noise the present circulation approaches that of the warm circulation. The authors apply a mixture of heat flux and temperature restoring for the surface boundary condition. Comparison with similar works, which apply a pure restoring for surface temperature, shows that the ocean circulation is much less sensitive to forced stochastic freshwater anomalies with the type of boundary condition used herein. A box model is used to illustrate the effects of the surface temperature parameterizations and the different buoyancy forcing for the present and warm climate.
-
During the austral summer of 1993-94 a number of 1-2 m deep snow pits were sampled in connection with firn-coring in western Dronning Maud Land, Antarctica. The traverse went from 800 to about 3000 m a.s.l. upon the high-altitude plateau. Profiles of cations (Na+, K+, Mg2+, Ca2+), anions (Cl−, NO3-, SO42- , CH3SO3−) and stable oxygen isotopes (δ18O) from 11 snow pils are presented here. Close to the coast 2 m of snow accumulates in about 2-3 years, whilst at sites on the high-altitude plateau 2 m of snow accumulates in 10—14 years. The spatial variation in ion concentrations shows that the ions can be divided into two groups, one with sea-salt elements and methane sulfonate and the other with nitrate and sulfate. For the sca-salt elements and methane sulfonate the concentrations decrease with increasing altitude and increasing distance from the coast, as well as with decreasing temperature and decreasing accumulation rate. For nitrate and sulfate the concentrations are constant or increase with respect to these parameters. This pattern suggests that the sources for sca-salt elements and methane sulfonate are local, whereas the sources for nitrate and sulfate are a mixture of local and long-range transport.
-
During the austral summer 1993/1994, the spatial distribution of snow was mapped by a ground-based snow radar (800–2300 MHz) in western Dronning Maud Land, East Antarctica. Snow radar soundings were performed along continuous profiles extending from the ice shelf up to the polar plateau, a total distance of 1040 km. The high-resolution radar registrations revealed subsurface layering in the uppermost 12 m of the snowpack. The travel time record was translated into snow accumulation expressed in water equivalents, based on an empirical relationship between wave speed and firn density. A good knowledge on snow density variations with depth is essential for the variability studies. Generally, the snow layering was well developed in the coastal area and less well developed on the polar plateau. High spatial variability in snow accumulation was observed on a regional as well as on a local scale. The variability was very high in areas with large surface slopes, such as the grounding zone and around nunataks. The highest variability was recorded in the nunatak area, where the standard deviation reached 59% of the spatial average accumulation. On the smooth high-altitude plateau, variations in accumulation were less pronounced. However, here the standard deviation exceeded 22% of the average accumulation rate. Provided that the snow radar soundings are supported by dating of reference horizons along the travel route, this is a good method to obtain the accumulation rate and pattern for large areas with a high spatial resolution.
-
In this paper we use output of a high-resolution general circulation model (ECHAM-3 T106, resolution 1.1°?1.1°) to study the spatial and temporal variation of sublimation on Antarctica. First, we compare model results with available observations of sublimation rates. The yearly cycle, with small latent heat fluxes during the winter, is well reproduced, and the agreement with sparsely available spot observations is fair. The model results suggest that a significant 10?15% of the annual precipitation over Antarctica is lost through sublimation and that sublimation plays an important role in the formation of blue ice areas. A preliminary analysis of the atmospheric boundary layer moisture budget shows that the spatial variation of sublimation in the coastal zone of East Antarctica can be explained by variations of horizontal advection of dry air. Dry air advection, and thus surface sublimation, is enhanced in areas where katabatic winds are strong and have a large downslope component and where the Antarctic topography drops suddenly from the plateau to the coastal zone. In areas where horizontal advection is small, like the plateau and the large ice shelves, special conditions must be met to make significant sublimation at the surface possible.
-
The ocean response to surface temperature transients is simulated with the use of the Hamburg large-scale geostrophic (LSG) ocean general circulation model (OGCM). The transition, from the present to a climate corresponding to a doubling of the atmospheric CO2 content, is compared with the reversed transition. For the Atlantic, the time scale for the deep ocean to adjust to the temperature changes was similar for both transitions. In the Pacific, the time scale is shorter for the present to warm transition than for the reverse case, a result of increased production of Antarctic bottom water (AABW) during the warm climate. While the transition from cold to warm climate shows no secular variability, the reversed transition generates considerable variability on time scales of 300–400 years. For the warm climate, oscillations with periods of 45 years are found in the Southern Ocean. Results of principal oscillation pattern (POP) analysis indicate that these oscillations are due to interaction between convection in the Southern Ocean and advected salinity anomalies in the Antarctic Circumpolar Current (ACC) and the Southern Pacific Ocean.
-
Water properties on the continental shelf in the southern Weddell Sea observed during NARP 92/93 are presented. The station distribution includes a section close to the floating ice shelf from the Filchner Depression to the Antarctic Peninsula. Temperature, salinity, oxygen, silicate, CFC-ll and CFC-12 distributions are shown. Melting under the ice shelves, circulation systems, residence times, sediment/water interactions and bottom water formation are discussed. Ice Shelf Water (ISW), which is formed by cooling and melting below the floating ice shelf, seems to be about 10 years older than its parent water mass, which indicates the residence time below the ice shelf. The average melting rate below the Filchner Ronne ice shelf, based on the volume flux of ISW in the Filchner Depression is estimated to be 0.1 m/year. Compared with earlier observations considerable changes were found in the water characteristics and distribution: The temperature of the Weddell Deep Water has increased 0.7°C since 1977. Western Shelf Water, usually dominating the bottom layers in the Filchner Depression and on the Berkner Shelf, was found only in the Ronne Depression.
-
A simple analytical model has been developed to study the formation of Ice Shelf Water (ISW). ISW is assumed to flow as a buoyancy-driven layer underneath the ice shelf. A relation between potential temperature and salinity in the ISW layer is calculated from the mass and energy balance. This temperature-salinity relation is shown to depend only on the temperature and the salinity of the source water mass and to be practically independent of entrainment and melt rates. The model results are obtained without making any assumptions about entrainment and melt rates. The model is in good agreement with observations under the Ronne Ice Shelf, and it indicates that ISW in the Filchner Depression is formed from Western Shelf Water (WSW) with salinity higher than 34.75 practical salinity units. Such high-salinity water is only observed in the Ronne Depression in the western part of the continental shelf. This implies a circulation of WSW, under the Filchner-Ronne Ice Shelf, from the Ronne Depression into the Filchner Depression. Similarly, the model shows that the ISW observed under J9 at the Ross Ice Shelf has been formed from Low Salinity Shelf Water (LSSW) from the eastern parts of the Ross Sea continental shelf. LSSW must therefore circulate under the eastern parts of the Ross Ice Shelf.
-
Oxygen 18 and helium isotope data from stations located in the Filchner Depression, on the continental slope of the southern Weddell Sea, and in the central Weddell Sea are presented and discussed. The 18O and 4He signals imprinted on the water circulating under the Filchner/Ronne Ice Shelf (Ice Shelf Water, or ISW) due to melting of glacial ice at the base of the ice shelf are traced across the sill separating the Filchner Depression from the Weddell Sea. Low δ18O values are correlated with high 4He concentrations in the ISW found in the Filchner Depression (minimum δ18O values: −0.8‰; maximum 4He concentrations: about 4.7×10−8 cm3 STP g−1). The fraction of glacial meltwater contained in the ISW found in the Filchner Depression is estimated to about 6 to 7‰. The 18O and helium isotope data from the overflowing shelf water component observed on the continental slope confirm the hypothesis that ISW contributes significantly to the Weddell Sea Bottom Water (WSBW). On the basis of a inultiparameter water mass analysis it is discussed which fraction of the WSBW originates from ISW and which other shelf waters potentially could contribute to WSBW.
-
Anomalously steep palaeomagnetic directions from the central part of an ∼ 5 m wide basaltic dyke from Fossilryggen, East Antarctica, suggest a Recent to late Tertiary age for its remanent magnetization, in conflict with KAr isotope ages of 162 ± 4 and 217 ± 3 Ma obtained from the central and slickenside margins respectively. Three neighbouring basaltic intrusions carry stable magnetizations whose directions (mean D, 23°; mean I, −40° and pole position, 38°N, 40°E) accord with previously obtained Mesozoic results from lava flows in the Vestfjella basalt province, East Antarctica. Rock magnetic properties do not discriminate between the different dykes, and it is proposed that the anomalous directions represent spot-readings of the geomagnetic field which arise from complete remagnetization during a period of faulting in Recent to late Tertiary times.
Explore
Topic
- geofysikk
- AABW (2)
- Antarktis (19)
- astrofysikk (1)
- atmosfæren (2)
- blåis (1)
- Bouvetøya (2)
- brehylle (3)
- bunnvann (1)
- Dronning Maud Land (13)
- ekspedisjoner (6)
- fjernanalyse (1)
- forskning (1)
- fysisk geografi (1)
- fysisk oseanografi (1)
- geografi (1)
- geokjemi (5)
- geologi (13)
- georadar (1)
- glasiologi (13)
- havbølger (1)
- havis (1)
- havstrømmer (4)
- hydrografi (2)
- hydrologi (1)
- innlandsis (1)
- isberg (2)
- isbreer (2)
- isbrem (3)
- isfjell (1)
- iskjerner (2)
- issfjell (1)
- isshelf (9)
- isstrøm (2)
- klimaendringer (1)
- konferanse (3)
- kontinentalsokkel (1)
- marin biologi (1)
- marin geologi (1)
- mesosfæren (1)
- meteorologi (6)
- NARE 1976/77 (1)
- NARE 1978/79 (3)
- NARE 1984/85 (3)
- NARE 1989/90 (1)
- NARE 1992/93 (1)
- NARE 1996/97 (1)
- NARP 1992/93 (1)
- ornitologi (1)
- oseanografi (17)
- ozonhull (1)
- ozonlaget (2)
- permafrost (1)
- Peter I. Øy (1)
- polarområdene (3)
- Rosshavet (2)
- sedimentologi (1)
- seismologi (2)
- smeltevann (1)
- Sør-Orknøyene (1)
- Sør-Shetlandsøyene (1)
- Sørishavet (19)
- Sørishavsstrømmen (2)
- stratosfæren (1)
- stratosfærisk kjemi (1)
- symposium (3)
- teknologi (1)
- tektonikk (2)
- topografi (2)
- vannmasser (3)
- vulkaner (1)
- Weddellhavet (13)
Resource type
- Book (4)
- Book Section (10)
- Journal Article (32)
- Report (1)
- Thesis (3)
Publication year
-
Between 1900 and 1999
-
Between 1930 and 1939
(1)
- 1939 (1)
-
Between 1940 and 1949
(1)
- 1948 (1)
-
Between 1960 and 1969
(1)
- 1968 (1)
- Between 1970 and 1979 (12)
- Between 1980 and 1989 (16)
- Between 1990 and 1999 (19)
-
Between 1930 and 1939
(1)