Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Your search

Results 4 resources

  • Antarctic krill Euphausia superba are key components of Antarctic ecosystems, serving as the major prey item for most of the megafauna in the region. Coastal fjords along the West Antarctic Peninsula have been identified as biological hotspots, areas in which high biomasses of both E. superba and their megafauna predators are consistently observed. We investigated feeding by E. superba in fjords and adjacent open waters of the West Antarctic Peninsula. Next generation sequencing of stomach contents from 174 krill indicated a diverse diet, with broad patterns consistent with previous understanding of E. superba feeding. Diatom sequence reads were frequent and abundant, indicating a largely diatom-based diet, while the occasional presence of high abundances of copepod sequence reads suggests carnivory supplemented the diet. Striking differences were observed between the stomach contents of krill collected in fjords and those of krill collected in adjacent open waters. Chaetoceros spp. diatoms made up 71% of the stomach contents sequences of krill collected in fjords, but less than 10% of the stomach contents sequences of krill collected in open waters. These differences could not be explained by differences in the surface water phytoplankton communities, as in both open waters and fjords Chaetoceros spp. made up less than 10% of the surface water sequence read assemblages. These feeding differences highlight the importance of taking into account regional differences in krill feeding when considering E. superba’s roles in Southern Ocean ecosystems, and suggest krill in fjords may make use of vertical structure in phytoplankton assemblages.

  • The contribution of oceanic net community production (NCP) to the observed seasonal cycle in atmospheric potential oxygen (APO) is estimated at Cape Grim, Tasmania. The resulting APONCP signal is compared to satellite and ocean model-based estimates of POC export and NCP across the Southern Ocean. The satellite products underestimate the amplitude of the observed APONCP seasonal cycle by more than a factor of 2. Ocean models suggest two reasons for this underestimate: (1) Current satellite products substantially underestimate the magnitude of NCP in early spring. (2) Seasonal O2 outgassing is supported in large part by storage of carbon in DOC and living biomass. More DOC observations are needed to help evaluate this latter model prediction. Satellite products could be improved by developing seasonally dependent relationships between remote sensing chlorophyll data and in situ NCP, recognizing that the former is a measure of mass, the latter of flux.

  • This study aims to describe the planktonic food web structure with respect to phytoplankton biomass (chlorophyll a ) and prevailing environmental conditions at the South Subtropical Front (SSTF) and the Polar Front (PF) in the Indian sector of the Southern Ocean. Sampling was carried out at each front for 72 hrs, at 6-hr intervals, during the austral summer 2011. Considerable variations were observed in the hydrography between these two fronts. A strong temperature minimum layer was observed at the PF. Although the surface primary production and chlorophyll a values showed similar trends at both the fronts, the water column values of these parameters showed major disparities. The phytoplankton composition also revealed marked difference between the fronts. A deep chlorophyll maximum concordant with the upper limit of the temperature minimum layer was prominent at the PF. The microzooplankton abundance at the SSTF was twice as high as at the PF. The mesozooplankton biovolume and population density also showed considerable variations between these fronts. Noticeable diel variations were observed in the surface mesozooplankton biovolumes at both the fronts and the copepod Pleuromamma gracilis showed active diel vertical migration at SSTF. Both the grazing and senescence indices showed significant variations between these fronts, suggesting a disparity in the ecological efficiency of the two regions. The variability observed in the plankton community structure with respect to the hydrography and the biological components measured suggests that a multivorous food web at the SSTF and a conventional food web at the PF prevailed during the period of study.

  • The genesis of phytoplankton blooms and the fate of their biomass in iron-limited, high-nutrient-low-chlorophyll regions can be studied under natural conditions with ocean iron fertilization (OIF) experiments. The Indo-German OIF experiment LOHAFEX was carried out over 40 d in late summer 2009 within the cold core of a mesoscale eddy in the productive south-west Atlantic sector of the Southern Ocean. Silicate concentrations were very low, and phytoplankton biomass was dominated by autotrophic nanoflagellates (ANF) in the size range 3-10 µm. As in all previous OIF experiments, the phytoplankton responded to iron fertilization by increasing the maximum quantum yield (Fv/Fm) and cellular chlorophyll levels. Within 3 wk, chlorophyll levels tripled and ANF biomass doubled. With the exception of some diatoms and dinoflagellates, the biomass levels of all other groups of the phyto- and protozooplankton (heterotrophic nanoflagellates, dinoflagellates and ciliates) remained remarkably stable throughout the experiment both inside and outside the fertilized patch. We attribute the unusually high biomass attained and maintained by ANF to the absence of their grazers, the salps, and to constraints on protozooplankton grazers by heavy predation exerted by the large copepod stock. The resistance to change of the ecosystem structure over 38 d after fertilization, indicated by homogeneity at regional and temporal scales, suggests that it was locked into a stable, mature state that had evolved in the course of the seasonal cycle. The LOHAFEX bloom provides a case study of a resistant/robust dynamic equilibrium between auto- and heterotrophic ecosystem components resulting in low vertical flux both inside and outside the patch despite high biomass levels. KEYWORDS: Antarctic · Protists · Fe-limitation · Si-limitation · Ecology-biogeochemistry relationship · Carbon:chlorophyll ratios · Ecosystem stability

Last update from database: 3/1/25, 3:17 AM (UTC)