Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 27 resources
-
Focuses on the Scandinavian/South African Antarctic expedition conducted between December 4, 1997 to February 6, 1998 which determined the role of Southern Ocean in the global carbon cycle in physical and biological oceanographic studies. Aims of the expedition; Underway sampling conducted; Biological results of the expedition; Conclusions.
-
The efficiency of physical concentration mechanisms for enrichment of algae and bacteria in newly formed sea-ice was investigated under defined conditions in the laboratory. Sea-ice formation was simulated in a 3,000 l tank under different patterns of water movement. When ice formed in an artificially generated current pattern, algal cells were substantially enriched within the ice matrix. Enrichment factors for chlorophyll a calculated from the ratio between the concentrations in ice and underlying water reached values of up to 53. Repeated mixing of ice crystals into the water column, as well as flow of water through the new ice layer, contributed to the enrichment of algae in the ice. Wave action during ice formation revealed lower phytoplankton enrichment factors of up to 9. Mixing of floating ice crystals with underlying water and pumping of water into the ice matrix by periodical expansion and compression of the slush ice layer were responsible for the wave-induced enrichment of algal cells. Physical enrichment of bacteria within the ice was negligible. Bacterial biomass within new ice was enhanced only when the concentration of algae was high. At low algal biomass, bacteria experienced substantial losses in the ice, most likely due to brine drainage, which were not observed for the microalgae. Bacterial cells are therefore not scavenged by ice crystals and the observed enrichment and sustainment of bacterial biomass within newly formed ice depend on their attachment to cells or aggregates of algae. Division rates of bacteria changed only slightly during ice formation.
-
Our studies in the coastal waters in North Norway show that rates of photosynthesis of natural phytoplankton assemblages are strongly inhibited by solar UV radiation. When exposed to high irradiances of direct solar radiation, photosynthetic rates were increased by approximately 150% when all UV radiation was excluded from samples, with UVB radiation being responsible for approximately 50% of the total inhibition. There was no discernible threshold value for inhibition of photosynthesis by UV radiation, even at UV (280–400 nm) irradiances as low as 0.1 W m−2. When natural assemblages were incubated in situ, inhibition of photosynthetic rates were detectable down to 10 m, where solar irradiance was about 3% of the radiation incident on the sea surface. Based on the inhibition of photosynthetic rates at very low fluences of UV radiation, post-bloom assemblages of phytoplankton in North Norway and possibly also in the Arctic ocean appear to be more sensitive to solar UV radiation than phytoplankton from the Southern Ocean.
-
Phytoplankton biomass and distribution of major phytoplankton groups were investigated in relation to sea ice conditions, hydrography and nutrients along three north-south transects in the north western Weddell Sea in early spring 1988 during the EPOS Study (European Polarstern Study), Leg 1. Three different zones along the transects could be distinguished: 1) the Open Water Zone (OWZ) from 58-degrees to 60-degrees-S with high chlorophyll a concentrations up to 3.5-mu-g l-1; 2) the Marginal Ice Zone (MIZ) from 60-degrees to about 62.5-degrees with chlorophyll a concentrations between 0.1 and 0.3-mu-g l-1, and 3) the closed pack-ice zone (CPI) from 62.5-degrees to 63.2-degrees-S with chlorophyll a concentrations below 0.1-mu-g l-1. Nutrient concentrations increased towards the south showing winter values under the closed pack-ice. Centric diatoms such as Thalassiosira gravida and Chaetoceros neglectum forming large colonies dominated the phytoplankton assemblage in terms of biomass in open water together with large, long chain forming, pennate diatoms, whereas small pennate diatoms such as Nitzschia spp., and nanoflagellates prevailed in ice covered areas. Fairly low concentrations of phytoplankton cells were encountered at the southernmost stations and many empty diatom frustules were found in the samples. The enhanced phytoplankton biomass in the Weddell-Scotia-Confluence area is achieved through sea ice melting in the frontal zone of two different water masses, the Weddell and the Scotia Sea surface waters.
-
A mathematical model describing the development of phytoplankton blooms as a function of the depth of the wind-mixed layer, spectral distribution of light, passage of atmospheric low-pressure systems, size of the initial phytoplankton stock and loss rates is presented. Model runs represent shade-adapted, large-celled, bloom-forming diatoms. Periodic deep mixing caused by strong winds may severely retard the development of blooms and frequently abort them before macronutrients are completely exhausted. Moderate depths of mixing (40-50 m) in combination with a moderately large total loss rate (about 0.01 3 h-1) can prevent blooms from developing during the brightest time of the year. Complete exhaustion of macronutrients in the upper waters is likely only if the wind-mixed layer is less than 10 m deep, i.e. in very sheltered waters, and also in the marginal ice zone when ice is melting. We do not exclude the possibility of control of phytoplankton biomass by iron in ice-free, deep-sea parts of the Antarctic Ocean, but the implied enhancement of export production through addition of iron might be restricted because of limitation by light, i.e. vertical mixing.
-
Microscopical examination of near-surface eucaryotic microbial populations in circumcontinental waters of Antarctica indicated that nanoplankton (<20 μm diameter) dominated in regions with low chlorophyll concentrations (< 1 μg l⁻¹). About 30 % of the mean nanoplankton carbon consisted of heterotrophic flagellates. Heterotrophic microplankton carbon (> 20 μm diameter) was generally less significant. The variation in phytoplankton biomass was the result primarily of changes in cell density of pennate diatoms in the East Wind Drift, and of centric diatoms in the Weddell Sea and the Scotia Ridge region. Autotrophic and heterotrophic carbon as determined by microscopical analysis were compared with data for total particulate carbon, chlorophyll a, and adenosine triphosphate. Estimates for the C:chl ratio of autotrophs increased with decreasing concentrations of chlorophyll a, with mean values of 46 in bloom waters and 144 in 'blue water'. A C:ATP ratio for heterotrophic nanoplankton was estimated to be about 100, while that for heterotrophic microplankton may be lower. Algorithms, incorporating concentrations of chlorophyll a and ATP, are described which allow estimates of autotrophic and heterotrophic microbial biomass.
-
Some Nitzschia and closely related species have been examined in the light and electron microscopes from fast ice samples in the Arctic and Antarctic. Nitzschia neofrigida, forming arborescent colonies, and Nitzschia promare, forming loose ribbon colonies, are described as new species, both probably included in the distribution of other similar species. A new combination, Auricula compacta, represents the first report of this genus from ice samples. Colony formation is reported for the first time in Nitzschia arctica and Nitzschia taeniiformis. No biopolar species were found and several reports of Arctic species in Antarctic ice samples have been refuted.
-
Fifteen oceanographic stations were occupied in the vicinity of Anvers Island, Antarctica, in January of 1985 and 1987. All stations showed high phytoplankton biomass (4.0 to 30 μg chl-a/liter) which was either uniformly distributed in the upper mixed layer or showed a pronounced sub-surface maximum at 4–5 m depth. As phosphate was less than 0.02 μm and nitrate about 2.0 μm in surface waters, it appears that nutrient limitation of phytoplankton growth may be of importance during such blooms. This view is supported by chemical measurements of the particulate material which showed high chl-a/ATP ratios (about 7.7), as well as high POC/ATP ratios (about 700). Microscopical analysis revealed a dominance of large-celled diatoms and the near absence of heterotrophic protozoans. Size fractionation studies showed that the nanoplankton accounted for only 28% of the total phytoplankton biomass. When phytoplankton biomass reaches the levels found at these stations, it appears that the cells are light-limited and hence dark-adapted, which results in the high chl-a/ATP ratios and the low assimilation values (0.49–1.64) obtained in our studies. Under such conditions greater than 50% of the total phytoplankton biomass is found below the 1% light level.
-
The response of phytoplankton to variations in the light regime was studied during the VULCAN and ACDA cruises in the Antarctic. Unenriched batch cultures of 12–19 days' duration reached chl concentrations of 10–50 μg−1 and exhibited exponential growth rates, with the maximal rate being 0.41 doubl, day−1. Ice edge algae exhibited maximum growth rates at photon flux densities (PFD) of 30–100 μE m−2S−1 and the growth rate was reduced by about 30% at 500–1000 μE m−2S−1 The chl/C ratio ranged between 0.004 and 0.018, with the lowest ratios at PFDs above 500 μE m−2S−1 chl/C ratios were also below maximum at PFDs below 40–50 μE m−2S−1 The C:N:P ratios were close to the Redfield ratios; the Si/C ratio averaged 0.16 (atoms), and the ATP/C ratio averaged from 0.0024 to 0.0050 in different culture senes. When thawed after having been frozen for 10 days, shade-adapted cultures were in a much better condition than sun-adapted ones. P versus I data showed that the maximum assimilation number varied from 0.75 to 4.4 μg C (μg chl)−1h−1. It varied inversely with the chl/C ratio; therefore the maximum carbon turnover rate varied little between samples (0.024/0.035 h−1). Low biomass communities exhibited relatively high values for α (the initial slope of P versus I curves), low values for 1sat (160–330 μE m−2S−1), and they were susceptible to photoinhibition. In contrast, communities dominated by Odontella weissflogii exhibited low values for α, a high value for Isat (560 μE m−2S−1 and they tolerated high PFDs. The photo-adaptational status of the phytoplankton in natural water samples is discussed relative to the profile of water column stability and mixing processes.
Explore
Topic
- fytoplankton
- alger (9)
- Antarktis (2)
- bakterier (2)
- biodiversitet (1)
- biogeografi (1)
- biokjemi (1)
- biologi (1)
- biomasse (4)
- botanikk (1)
- Brategg ekspedisjon (1)
- diatomeer (4)
- Dronning Maud Land (1)
- ekspedisjoner (2)
- forskning (2)
- forurensning (1)
- fotosyntese (1)
- fysiologi (1)
- havis (3)
- hoppekreps (1)
- hydrografi (2)
- krill (6)
- marin biologi (11)
- marinbiologi (4)
- miljø (1)
- NARE 1992/93 (3)
- NARE 1996/97 (1)
- NARE 1997/98 (1)
- NARE ekspedisjoner (1)
- økofysiologi (1)
- økosystemer (2)
- oseanografi (11)
- plankton (6)
- planteplankton (8)
- polarområdene (4)
- primærproduksjon (1)
- Scotiahavet (1)
- sjøis (1)
- sjøvann (1)
- Sørishavet (24)
- ultrafiolett stråling (1)
- Weddellhavet (6)
- zooplankton (3)
Resource type
- Book (1)
- Book Section (8)
- Journal Article (18)