Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 5 resources
-
From 1901 to 1912 – known as the “heroic period” of Arctic and Antarctic exploration – great inroads were made (not only geographic but also scientific) to our knowledge of the continent. At Amundsen's Expedition through the Northwest Passage, measurements of the geomagnetic field and visual auroras were carried out for 19 months at Gjoa Haven (Gjøahavn in Norwegian; geographic coordinates 68°37′10′′ N, 95°53′25′′ W). Scott's Discovery Expedition – at Cape Armitage, McMurdo (coordinates 77.86° S, 166.69° E), Antarctica – carried out the same type of measurements. Their observations were carried out geomagnetically conjugate to Gjoa Haven, with both stations close to 78° magnetic latitude. In addition, measurements were overlapping in time during 1903–1904. However, these two stations are located at different longitudes, so there is a difference in local time between the stations of about 6.5 h. Gjoa Haven and Cape Armitage are conveniently located for separating disturbances in the polar cap regions caused by solar electromagnetic radiations or the solar wind. Auroras were observed during 7 months per year. This gave a unique possibility to compare conjugate characteristics of polar cap auroras. Comparing conjugate geophysical data introduces some difficulties. During the winter season at Gjoa Haven, they had a bright summer in Antarctica, and visa versa. Thus, simultaneous temporal and spatial ionospheric variations can be marked differently. Still, the average diurnal and seasonal variations were similar. The quantity of the auroral data from Cape Armitage was larger because there they had a continuous watch of the sky. The main findings regarding polar cap auroras are the following. Three different auroral forms dominate the polar cap. Low-intensity auroral bands – then called streamers – were the dominating auroral forms morning and afternoon. The number of auroral events in 1903 was nearly twice that in 1902 and 1904. A marked midwinter maximum was observed at both stations. Many displays were observed poleward of the oval. The large fraction was associated with weak magnetic disturbances. Some forms of polar cap aurora have special magnetic signatures and seem to be anti-correlated with Kp. They can be mapped even if they are not seen. According to recent satellite measurements (Newell et al., 2009), they are probably caused by polar rain and/or photoelectrons.
-
Understanding how Antarctica is changing and how these changes influence the rest of the Earth is fundamental to the future robustness of human society. Strengthening our understanding of these changes and their implications requires dedicated, sustained and coordinated observations of key Antarctic indicators. The Troll Observing Network (TONe), now under development, is Norway’s contribution to the global need for sustained, coordinated, complementary and societally relevant observations from Antarctica. When fully implemented within the coming three years, TONe will be a state-of-the-art, multi-platform, multi-disciplinary observing network in data-sparse Dronning Maud Land. A critical part of the network is a data management system that will ensure broad, free access to all TONe data to the international research community.
-
Sea ice kinematics impacts the global ocean–atmosphere system in numerous ways: modification of albedo, ice cover, and ice mass; heat transmission between atmosphere and ocean; and ice thickness distribution. Such research is often conducted using in situ and remotely-sensed observations of ice motion. In recent work, an ice motion product generated from overlapping sections of multiple individual swath pairs – the so-called swath-to-swath (S2S) approach – has been favourably evaluated by buoys in the Arctic. This new product is better able to represent drifting buoy trajectories, however, it has yet to be applied to ice kinematics research. In this study, we investigate the Antarctic sea ice differential kinematic parameters (DKPs) represented by divergence and maximum shear rate computed from the new S2S ice motion product, and compare these with the daily-map (DM)-derived DKP magnitudes. Results indicate that S2S-derived DKP magnitudes are highly timescale-dependent and well represented by an exponential relationship. Furthermore, the exponential DKP curve parameters in this work are shown to correspond well to ice thickness, thus enabling a new class of Antarctic ice thickness proxy observations. This technique lays the groundwork for the possibility of new proxy measurement of ice thickness back to at least 1991, when the high-accuracy S2S measurements of ice motion become available.
-
We examine the response of the Community Earth System Model Versions 1 and 2 (CESM1 and CESM2) to abrupt quadrupling of atmospheric CO2 concentrations (4xCO2) and to 1% annually increasing CO2 concentrations (1%CO2). Different estimates of equilibrium climate sensitivity (ECS) for CESM1 and CESM2 are presented. All estimates show that the sensitivity of CESM2 has increased by 1.5 K or more over that of CESM1. At the same time the transient climate response (TCR) of CESM1 and CESM2 derived from 1%CO2 experiments has not changed significantly—2.1 K in CESM1 and 2.0 K in CESM2. Increased initial forcing as well as stronger shortwave radiation feedbacks are responsible for the increase in ECS seen in CESM2. A decomposition of regional radiation feedbacks and their contribution to global feedbacks shows that the Southern Ocean plays a key role in the overall behavior of 4xCO2 experiments, accounting for about 50% of the total shortwave feedback in both CESM1 and CESM2. The Southern Ocean is also responsible for around half of the increase in shortwave feedback between CESM1 and CESM2, with a comparable contribution arising over tropical ocean. Experiments using a thermodynamic slab-ocean model (SOM) yield estimates of ECS that are in remarkable agreement with those from fully coupled Earth system model (ESM) experiments for the same level of CO2 increase. Finally, we show that the similarity of TCR in CESM1 and CESM2 masks significant regional differences in warming that occur in the 1%CO2 experiments for each model.
-
The high-latitude ionosphere is highly dynamical with significant irregularities and density gradients. However, the spatial and temporal distributions of density gradients and irregularities are very different between the Arctic and Antarctic. In this report, we study the interhemispheric asymmetry of the large-scale (100 km) density gradients in both polar caps. Our results show that density gradients in the Arctic are enhanced during local winter (December solstice) with a peak around 19 UT. The UT and spatial distributions in the Antarctic local winter (June solstice) are similar to the Arctic except that they are reversed by 12 hr, which indicates a mirror symmetry between hemispheres. The 12-hr difference in the peak density gradients can be explained by the displacements between the geographic and geomagnetic poles. The only asymmetry (anomaly) is the persistence of strong density gradients in the southern polar cap during local summer (December solstice).
Explore
Topic
- fysikk
- Antarktis (3)
- atmosfæren (1)
- biologi (1)
- datainnsamling (1)
- Discoveryekspedisjonen (1)
- Dronning Maud Land (1)
- forskningsinfrastruktur (1)
- geologi (1)
- geovitenskap (1)
- havis (1)
- internasjonal samarbeid (1)
- ionosfæren (1)
- karbondioksid (1)
- kjemi (1)
- klimaendringer (1)
- klimagasser (1)
- klimamodeller (1)
- klimatologi (1)
- menneskelig påvirkning (1)
- meteorologi (1)
- polarfarere (1)
- polarområdene (2)
- romfysikk (1)
- skyer (1)
- Sørishavet (3)
- sørlys (1)
- Troll forskningsstasjon (1)
Resource type
- Journal Article (5)
Publication year
Online resource
- yes (5)