Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 4 resources
-
Brominated diphenyl ethers (BDE47, 99, 100, and 209) were measured in air, snow and sea ice throughout western Antarctica between 2001 and 2007. BDEs in Antarctic air were predominantly associated with aerosols and were low compared to those in remote regions of the northern hemisphere, except in Marguerite Bay following the fire at Rothera research station in Sept 2001, indicating that this event was a local source of BDE209 to the Antarctic environment. Aerosol BDE47/100 reflects a mixture of commercial pentaBDE products; however, BDE99/100 is suggestive of photodegradation of BDE99 during long-range atmospheric transport (LRAT) in the austral summer. BDEs in snow were lower than predicted based on snow scavenging of aerosols indicating that atmospheric deposition events may be episodic. BDE47, -99, and -100 significantly declined in Antarctic sea ice between 2001 and 2007; however, BDE209 did not decline in Antarctic sea ice over the same time period. Significant losses of BDE99 and -100 from sea ice were recorded over a 19 day period in spring 2001 demonstrating that seasonal ice processes result in the preferential loss of some BDEs. BDE47/100 and BDE99/100 in sea ice samples reflect commercial pentaBDE products, suggesting that photodegradation of BDE99 is minimal during LRAT in the austral winter.
-
Long term atmospheric mercury measurements in the Southern Hemisphere are scarce and in Antarctica completely absent. Recent studies have shown that the Antarctic continent plays an important role in the global mercury cycle. Therefore, long term measurements of gaseous elemental mercury (GEM) were initiated at the Norwegian Antarctic Research Station, Troll (TRS) in order to improve our understanding of atmospheric transport, transformation and removal processes of GEM. GEM measurements started in February 2007 and are still ongoing, and this paper presents results from the first four years. The mean annual GEM concentration of 0.93 ± 0.19 ng m−3 is in good agreement with other recent southern-hemispheric measurements. Measurements of GEM were combined with the output of the Lagrangian particle dispersion model FLEXPART, for a statistical analysis of GEM source and sink regions. It was found that the ocean is a source of GEM to TRS year round, especially in summer and fall. On time scales of up to 20 days, there is little direct transport of GEM to TRS from Southern Hemisphere continents, but sources there are important for determining the overall GEM load in the Southern Hemisphere and for the mean GEM concentration at TRS. Further, the sea ice and marginal ice zones are GEM sinks in spring as also seen in the Arctic, but the Antarctic oceanic sink seems weaker. Contrary to the Arctic, a strong summer time GEM sink was found, when air originates from the Antarctic plateau, which shows that the summertime removal mechanism of GEM is completely different and is caused by other chemical processes than the springtime atmospheric mercury depletion events. The results were corroborated by an analysis of ozone source and sink regions.
-
The thematic cluster ‘‘Human impacts in the Arctic and Antarctic’’ in Polar Research has its origins in the International Polar Year (2007-09) Oslo Science Conference held in Oslo, Norway, from 8 to 12 June 2010. We were the co-convenors of the session ‘‘Human impacts in the Arctic and Antarctic: regulatory and management implications,’’ in which 27 talks and 21 posters were presented over the course of two days. We invited contributors to the conference session to explore all types of impacts of human activities and regional environmental change in the polar regions, with a special focus on highlighting the management priorities for the protection of the landscape (environment and people) of the polar regions in the face of increasing human activity. Exploring a wide range of topics ranging from human wildlife interactions to chemical contamination and from whaling to polar tourism, contributors provided examples of existing environmental management regimes that are working as well as those that are not.
-
As part of the 2009 Operation Ice Bridge campaign, the NASA DC-8 aircraft was used to fill the data-time gap in laser observation of the changes in ice sheets, glaciers and sea ice between ICESat-I (Ice, Cloud, and land Elevation Satellite) and ICESat-II. Complementing the cryospheric instrument payload were four in situ atmospheric sampling instruments integrated onboard to measure trace gas concentrations of CO2, CO, N2O, CH4, water vapor and various VOCs (Volatile Organic Compounds). This paper examines two plumes encountered at high altitude (12 km) during the campaign; one during a southbound transit flight (13°S) and the other at 86°S over Antarctica. The data presented are especially significant as the Southern Hemisphere is heavily under-sampled during the austral spring, with few if any high-resolution airborne observations of atmospheric gases made over Antarctica. Strong enhancements of CO, CH4, N2O, CHCl3, OCS, C2H6, C2H2 and C3H8 were observed in the two intercepted air masses that exhibited variations in VOC composition suggesting different sources. The transport model FLEXPART showed that the 13°S plume contained predominately biomass burning emissions originating from Southeast Asia and South Africa, while both anthropogenic and biomass burning emissions were observed at 86°S with South America and South Africa as indicated source regions. The data presented here show evidence that boundary layer pollution is transported from lower latitudes toward the upper troposphere above the South Pole, which may not have been observed in the past.
Explore
Topic
- forurensning
- Antarktis (3)
- atmosfæren (3)
- atmosfæriske gasser (1)
- Dronning Maud Land (1)
- havis (1)
- innlandsis (1)
- isbreer (1)
- isbrem (1)
- kjemi (1)
- kjemiske analyser (1)
- menneskelig påvirkning (2)
- meteorologi (1)
- miljøgifter (2)
- miljøvern (1)
- økosystemer (1)
- ozonlaget (1)
- polarområdene (2)
- sjøis (1)
- Sørishavet (1)
- sporgass (1)
- Troll forskningsstasjon (1)
- turisme (1)
Resource type
- Journal Article (4)
Publication year
Online resource
- yes (4)