Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 38 resources
-
Microplastic (MP; plastic particles < 5 mm) pollution is pervasive in the marine environment, including remote polar environments. This study provides the first pan-Antarctic survey of MP pollution in Southern Ocean sea ice by analyzing sea ice cores from several diverse Antarctic regions. Abundance, chemical composition, and particle size data were obtained from 19 archived ice core samples. The cores were melted, filtered, and chemically analyzed using Fourier-transform infrared spectroscopy and 4,090 MP particles were identified. Nineteen polymer types were found across all samples, with an average concentration of 44.8 (± 50.9) particles·L-1. Abundance and composition varied with ice type and geographical location. Pack ice exhibited significantly higher particle concentrations than landfast ice, suggesting open ocean sources of pollution. Winter sea ice cores had significantly more MPs than spring and summer-drilled cores, suggesting ice formation processes play a role in particle incorporation. Smaller particles dominated across samples. Polyethylene (PE) and polypropylene (PP) were the most common polymers, mirroring those most identified across marine habitats. Higher average MP concentrations in developing sea ice during autumn and winter, contrasting lower levels observed in spring and summer, suggest turbulent conditions and faster growth rates are likely responsible for the increased incorporation of particles. Southern Ocean MP contamination likely stems from both local and distant sources. However, the circulation of deep waters and long-range transport likely contribute to the accumulation of MPs in regional gyres, coastlines, and their eventual incorporation into sea ice. Additionally, seasonal sea ice variations likely influence regional polymer compositions, reflecting the MP composition of the underlying waters.
-
The ongoing global climate crisis increases temperatures in polar regions faster and with greater magnitude than elsewhere. The decline of Arctic sea ice opens up new passages, eventually leading to higher anthropogenic activities such as shipping, fishing, and mining. Climate change and anthropogenic activities will increase contaminant transport from temperate to Arctic regions. The shipping industry uses copper as an antifouling coating. Copper is an essential element but becomes toxic at excess concentrations, and its use may inadvertently affect non-target organisms such as copepods. Copper affects copepods by lowering reproductive output, prolonging developmental time, and causing increased mortality. As data on copper sensitivity of polar copepods at low temperatures are rare, we conducted onboard survival experiments with the Arctic region’s most common copepod species (Calanus finmarchicus, C. glacialis, C. hyperboreus). Acute survival tests were done for up to 8 days on individuals in 70 ml bottles at 1 °C with nominal copper concentrations ranging from 3 to 480 μg L−1. We used a reduced General Unified Threshold model for Survival (GUTS) to analyse the data, and placed our results in the context of the few published copper sensitivity data of the Antarctic and temperate copepod species at low temperatures. The sensitivity of Cu exposure was similar between the three Calanus species. However, a model comparison suggests that the tested C. glacialis population is less sensitive than the other two species in our experiments. Compared to published data, the three Arctic species appear slightly less sensitive to copper compared to their Antarctic counterparts but more compared to their temperate ones. Our literature search revealed only a few available studies on the copper sensitivity of polar copepods. In the future, this species group will be exposed to more pollutants, which warrants more studies to predict potential risks, especially given possible interactions with environmental factors.
-
Several studies have documented that plastic pollution is affecting one of the most remote and pristine regions of our planet, Antarctica. Plastics of different size and polymeric composition have been retrieved in Antarctic sea ice, surface waters and sediments, with microplastics (mostly fibers) found both in terrestrial and marine organisms. Such evidence raises concerns about potential detrimental effects on biodiversity and ecosystem functions. The present review aims to report the most up-to-date knowledge on occurrence and distribution of plastic pollution in the Antarctic environment and biota including interaction with microorganisms, potential sources, and its impact on Antarctic biota. Our understanding of plastic pollution in this polar region will help us define the human footprint in Antarctica and predict future ecological risks.
-
The flightless midge Eretmoptera murphyi is thought to be continuing its invasion of Signy Island via the treads of personnel boots. Current boot-wash biosecurity protocols in the Antarctic region rely on microbial biocides, primarily Virkon® S. As pesticides have limited approval for use in the Antarctic Treaty area, we investigated the efficacy of Virkon® S in controlling the spread of E. murphyi using boot-wash simulations and maximum threshold exposures. We found that E. murphyi tolerates over 8 h of submergence in 1% Virkon® S. Higher concentrations increased effectiveness, but larvae still exhibited > 50% survival after 5 h in 10% Virkon® S. Salt and hot water treatments (without Virkon® S) were explored as possible alternatives. Salt water proved ineffective, with mortality only in first-instar larvae across multi-day exposures. Larvae experienced 100% mortality when exposed for 10 s to 50°C water, but they showed complete survival at 45°C. Given that current boot-wash protocols alone are an ineffective control of this invasive insect, we advocate hot water (> 50°C) to remove soil, followed by Virkon® S as a microbial biocide on ‘clean’ boots. Implications for the spread of invasive invertebrates as a result of increased human activity in the Antarctic region are discussed.
-
Understanding the drivers and effects of exposure to contaminants such as mercury (Hg) and organochlorine compounds (OCs) in Antarctic wildlife is still limited. Yet, Hg and OCs have known physiological and fitness effects in animals, with consequences on their populations. Here we measured total Hg (a proxy of methyl-Hg) in blood cells and feathers, and 12 OCs (seven polychlorinated biphenyls, PCBs, and five organochlorine pesticides, OCPs) in plasma of 30 breeding female Antarctic petrels Thalassoica antarctica from one of the largest colonies in Antarctica (Svarthamaren, Dronning Maud Land). This colony is declining and there is poor documentation on the potential role played by contaminants on individual physiology and fitness. Carbon (δ13C) and nitrogen (δ15N) stable isotope values measured in the females' blood cells and feathers served as proxies of their feeding ecology during the pre-laying (austral spring) and moulting (winter) periods, respectively. We document feather Hg concentrations (mean ± SD, 2.41 ± 0.83 μg g−1 dry weight, dw) for the first time in this species. Blood cell Hg concentrations (1.38 ± 0.43 μg g−1 dw) were almost twice as high as those reported in a recent study, and increased with pre-laying trophic position (blood cell δ15N). Moulting trophic ecology did not predict blood Hg concentrations. PCB concentrations were very low (Σ7PCBs, 0.35 ± 0.31 ng g−1 wet weight, ww). Among OCPs, HCB (1.02 ± 0.36 ng g−1 ww) and p, p’-DDE (1.02 ± 1.49 ng g−1 ww) residues were comparable to those of ecologically-similar polar seabirds, while Mirex residues (0.72 ± 0.35 ng g−1 ww) were higher. PCB and OCP concentrations showed no clear relationship with pre-laying or moulting feeding ecology, indicating that other factors overcome dietary drivers. OC residues were inversely related to body condition, suggesting stronger release of OCs into the circulation of egg-laying females upon depletion of their lipid reserves. Egg volume, hatching success, chick body condition and survival were not related to maternal Hg or OC concentrations. Legacy contaminant exposure does not seem to represent a threat for the breeding fraction of this population over the short term. Yet, exposure to contaminants, especially Mirex, and other concurring environmental stressors should be monitored over the long-term in this declining population.
-
In the first multiyear sampling effort for POPs in the eastern Antarctic atmosphere, 32 PCBs and 38 organochlorine pesticides were targeted in air collected with a high-flow-through passive sampler. Agricultural chemicals were found to dominate atmospheric profiles, in particular HCB and endosulfan-I, with average concentrations of 12 600 and 550 fg/m3, respectively. HCB showed higher concentrations in the austral summer, indicative of local, temperature-dependent volatilisation, while endosulfan-I appeared to show fresh, late-austral-summer input followed by temporally decreasing levels throughout the year. The current-use herbicide, trifluralin, and the legacy pesticides mirex and toxaphene, were detected in Antarctic air for the first time. Trifluralin was observed at low but increasing levels over the five-year period. Its detection in the Antarctic atmosphere provides evidence of its persistence and long-range environmental transport capability. While a time frame of five years exceeds the duration of most Antarctic air monitoring efforts, it is projected that continuous monitoring at the decadal scale is required to detect an annual 10% change in atmospheric concentrations of key analytes. This finding emphasizes the importance of continuous, long-term monitoring efforts in polar regions, that serve a special role as sentinel environments of hemispheric chemical usage trends.
-
This is the first survey to investigate the occurrence and extent of microplastic (MPs) contamination in sub surface waters collected near-shore and off-shore the coastal area of the Ross Sea (Antarctica). Moreover, a non-invasive method to analyze MPs, consisting in filtration after water sampling and analysis of the dried filter through Fourier Transform Infrared Spectroscopy (FTIR) 2D Imaging, using an FPA detector, was proposed. The non-invasiveness of analytical set-up reduces potential bias and allows subsequent analysis of the filter sample for determination of other classes of contaminants. MPs ranged from 0.0032 to 1.18 particle per m3 of seawater, with a mean value of 0.17 ± 0.34 particle m−3, showing concentrations lower than those found in the oceans worldwide. MPs included fragments (mean 71.9 ± 21.6%), fibers (mean 12.7 ± 14.3%), and others (mean 15.4 ± 12.8%). The presence of different types of MPs was confirmed by FTIR spectroscopy, with predominant abundance of polyethylene and polypropylene. The potential environmental impact arising from scientific activities, such as marine activities for scientific purposes, and from the sewage treatment plant, was also evidenced.
-
Petroleum hydrocarbon contaminated sites, associated with the contemporary and legacy effects of human activities, remain a serious environmental problem in the Antarctic and Arctic. The management of contaminated sites in these regions is often confounded by the logistical, environmental, legislative and financial challenges associated with operating in polar environments. In response to the need for efficient and safe methods for managing contaminated sites, several technologies have been adapted for on-site or in situ application in these regions. This article reviews six technologies which are currently being adapted or developed for the remediation of petroleum hydrocarbon contaminated sites in the Antarctic and Arctic. Bioremediation, landfarming, biopiles, phytoremediation, electrokinetic remediation and permeable reactive barriers are reviewed and discussed with respect to their advantages, limitations and potential for the long-term management of soil and groundwater contaminated with petroleum hydrocarbons in the Antarctic and Arctic. Although these technologies demonstrate potential for application in the Antarctic and Arctic, their effectiveness is dependent on site-specific factors including terrain, soil moisture and temperature, freeze–thaw processes and the indigenous microbial population. The importance of detailed site assessment prior to on-site or in situ implementation is emphasized, and it is argued that coupling of technologies represents one strategy for effective, long-term management of petroleum hydrocarbon contaminated sites in the Antarctic and Arctic. Keywords: Petroleum hydrocarbons; remediation; Antarctica; Arctic; cold regions; contaminated site.
-
The role of polychlorinated biphenyls (PCBs) on exposure-related endocrine effects has been poorly investigated in wild birds. This is the case for stress hormones including corticosterone (CORT). Some studies have suggested that environmental exposure to PCBs and altered CORT secretion might be associated. Here we investigated the relationships between blood PCB concentrations and circulating CORT levels in seven free-ranging polar seabird species occupying different trophic positions, and hence covering a wide range of PCB exposure. Blood ∑7PCB concentrations (range: 61–115,632 ng/g lw) were positively associated to baseline or stress-induced CORT levels in three species and negatively associated to stress-induced CORT levels in one species. Global analysis suggests that in males, baseline CORT levels generally increase with increasing blood ∑7PCB concentrations, whereas stress-induced CORT levels decrease when reaching high blood ∑7PCB concentrations. This study suggests that the nature of the PCB-CORT relationships may depend on the level of PCB exposure.
-
Seabirds often have high loads of contaminants. These contaminants have endocrine disrupting properties but their relationships with some endocrine mechanisms are still poorly investigated in free-living organisms. This is the case for the stress response which shifts energy investment away from reproduction and redirects it towards survival. In birds, this stress response is achieved through a release of corticosterone and is also accompanied by a decrease in circulating prolactin, an anterior pituitary hormone widely involved in regulating parental cares. We measured blood concentrations of some legacy persistent organic pollutants (POPs) and mercury (Hg) and examined their relationships with the corticosterone and prolactin responses of known-age (9–46years old) incubating snow petrels (Pagodroma nivea) to a standardized capture/handling stress protocol. In this Antarctic seabird, we also investigated whether high contaminant burden correlates with a higher occurrence of egg neglect, a frequently observed behavior in snow petrels. POPs and Hg were unrelated to age. Stress-induced corticosterone concentrations were positively related to POPs in both sexes, and stress-induced prolactin concentrations were negatively related to Hg in males. Egg-neglect behavior was not related to POPs burden, but males with higher Hg concentrations were more likely to neglect their egg. This suggests that in birds, relationships between age and contaminants are complex and that even low to moderate concentrations of POPs and Hg are significantly related to hormonal secretion. In this Antarctic species, exposure to legacy POPs and Hg could make individuals more susceptible to environmental stressors such as ongoing disturbances in Polar Regions.
-
Sanchís et al. (2015) recently reported the occurrence of volatile methyl siloxanes (VMS) in soil, vegetation, phytoplankton, and krill samples from Antarctica. As the paper’s title suggests, findings of these chemicals in such a remote region is unexpected and of significant concern. However, our experience with the analysis of these compounds at trace concentrations suggests that the observations reported may have been influenced by artifacts. Here we present our concerns based upon known emissions, physicochemical properties and on apparent quality control measures including treatment of blank samples and detection limits.
-
This study investigated the role of a permanently manned Australian Antarctic research station (Casey Station) as a source of contemporary persistent organic pollutants (POPs) to the local environment. Polybrominated diphenyl ethers (PBDEs) and poly- and perfluoroalkylated substances (PFASs) were found in indoor dust and treated wastewater effluent of the station. PBDE (e.g., BDE-209 26–820 ng g–1 dry weight (dw)) and PFAS levels (e.g., PFOS 3.8–2400 ng g–1 (dw)) in dust were consistent with those previously reported in homes and offices from Australia, reflecting consumer products and materials of the host nation. The levels of PBDEs and PFASs in wastewater (e.g., BDE-209 71–400 ng L–1) were in the upper range of concentrations reported for secondary treatment plants in other parts of the world. The chemical profiles of some PFAS samples were, however, different from domestic profiles. Dispersal of chemicals into the immediate marine and terrestrial environments was investigated by analysis of abiotic and biotic matrices. Analytes showed decreasing concentrations with increasing distance from the station. This study provides the first evidence of PFAS input to Polar regions via local research stations and demonstrates the introduction of POPs recently listed under the Stockholm Convention into the Antarctic environment through local human activities.
-
We report in situ atmospheric measurements of hydrofluorocarbon HFC-43-10mee (C5H2F10; 1,1,1,2,2,3,4,5,5,5-decafluoropentane) from seven observatories at various latitudes, together with measurements of archived air samples and recent Antarctic flask air samples. The global mean tropospheric abundance was 0.21 ± 0.05 ppt (parts per trillion, dry air mole fraction) in 2012, rising from 0.04 ± 0.03 ppt in 2000. We combine the measurements with a model and an inverse method to estimate rising global emissions—from 0.43 ± 0.34 Gg yr−1 in 2000 to 1.13 ± 0.31 Gg yr−1 in 2012 (~1.9 Tg CO2-eq yr−1 based on a 100 year global warming potential of 1660). HFC-43-10mee—a cleaning solvent used in the electronics industry—is currently a minor contributor to global radiative forcing relative to total HFCs; however, our calculated emissions highlight a significant difference from the available reported figures and projected estimates.
-
Fish oil dietary supplements and complementary medicines are pitched to play a role of increasing strategic importance in meeting daily requirements of essential nutrients, such as long-chain (≥C20, LC) omega-3 polyunsaturated fatty acids and vitamin D. Recently a new product category, derived from Antarctic krill, has been launched on the omega-3 nutriceutical market. Antarctic krill oil is marketed as demonstrating a greater ease of absorption due to higher phospholipid content, as being sourced through sustainable fisheries and being free of toxins and pollutants; however, limited data is available on the latter component. Persistent Organic Pollutants (POP) encompass a range of toxic, man-made contaminants that accumulate preferentially in marine ecosystems and in the lipid reserves of organisms. Extraction and concentration of fish oils therefore represents an inherent nutritional-toxicological conflict. This study aimed to provide the first quantitative comparison of the nutritional (EPA and DHA) versus the toxicological profiles of Antarctic krill oil products, relative to various fish oil categories available on the Australian market. Krill oil products were found to adhere closely to EPA and DHA manufacturer specifications and overall were ranked as containing intermediate levels of POP contaminants when compared to the other products analysed. Monitoring of the pollutant content of fish and krill oil products will become increasingly important with expanding regulatory specifications for chemical thresholds.
-
This article investigates the annual cycle observed in the Antarctic baseline aerosol scattering coefficient, total particle number concentration, and particle number size distribution (PNSD), as measured at Troll Atmospheric Observatory. Mie theory shows that the annual cycles in microphysical and optical aerosol properties have a common cause. By comparison with observations at other Antarctic stations, it is shown that the annual cycle is not a local phenomenon, but common to central Antarctic baseline air masses. Observations of ground-level ozone at Troll as well as backward plume calculations for the air masses arriving at Troll demonstrate that the baseline air masses originate from the free troposphere and lower stratosphere region, and descend over the central Antarctic continent. The Antarctic summer PNSD is dominated by particles with diameters <100 nm recently formed from the gas-phase despite the absence of external sources of condensible gases. The total particle volume in Antarctic baseline aerosol is linearly correlated with the integral insolation the aerosol received on its transport pathway, and the photooxidative production of particle volume is mostly limited by photooxidative capacity, not availability of aerosol precursor gases. The photooxidative particle volume formation rate in central Antarctic baseline air is quantified to 207 ±4 μm3/(MJ m). Further research is proposed to investigate the applicability of this number to other atmospheric reservoirs, and to use the observed annual cycle in Antarctic baseline aerosol properties as a benchmark for the representation of natural atmospheric aerosol processes in climate models.
-
Seabirds, as long-lived top predators, accumulate contaminants such as mercury (Hg), an established endocrine disruptor. In long lived species hormonal secretion varies with age; therefore, Hg-induced endocrine disruption may be exacerbated in some age classes. Here we investigated relationships between blood total Hg and luteinizing hormone (LH, a key pituitary hormone for the onset of breeding), in pre-laying known-age (11–45 years old) snow petrels (Pagodroma nivea) from Adélie Land, Antarctica. We predicted that 1) blood Hg would increase with advancing age as a consequence of bio-accumulation; and that 2) increasing blood Hg would be related to decreased concentrations of LH in the most Hg-contaminated individuals. Hg concentrations were higher in females than in males (p<0.001), and contrary to our prediction, decreased with advancing age in males (p = 0.009) and tended to do so in females (p = 0.06). The analysis of stable isotopes (δ13C and δ15N) suggested that this unexpected pattern could originate from age and sex-related variations in trophic niche, and hence Hg exposure. Regarding LH, our prediction was only supported in young birds (≤23 years) where baseline LH was inversely correlated with Hg concentrations (p = 0.04). Hg burden did not predict baseline LH or GnRH-induced LH in birds that were more than 23 years old. These results show that age and contaminants may interfere with major endocrine mechanisms and, together with other recent studies, support the view that Hg could be connected to LH secretion and could then impair the fitness of long-lived birds.
-
Effective management of contaminated land requires a sound understanding of site geology, chemistry and biology. This is particularly the case for Antarctica and the Arctic, which function using different legislative frame- works to those of industrialized, temperate environments and are logistically challenging environments to operate in. This paper reviews seven remediation technologies currently used, or demonstrating potential for on-site or in situ use at metal-contaminated sites in polar environments, namely permeable reactive barriers (PRB), chemical fixation, bioremediation, phytoremediation, electrokinetic separation, land capping, and pump and treat systems. The technologies reviewed are discussed in terms of their advantages, limitations and overall potential for the management of metal-contaminated sites in Antarctica and the Arctic. This review demonstrates that several of the reviewed technologies show potential for on-site or in situ usage in Antarctica and the Arctic. Of the reviewed technologies, chemical fixation and PRB are particularly promising technologies for metal-contaminated sites in polar environments. However, further research and relevant field trials are required before these technologies can be considered proven techniques. Keywords: Polar; heavy metals; remediation; contaminants; in situ
-
A first long-term monitoring of selected persistent organic pollutants (POPs) in Antarctic air has been conducted at the Norwegian research station Troll (Dronning Maud Land). As target contaminants 32 PCB congeners, α- and γ-hexachlorocyclohexane (HCH), trans- and cis-chlordane, trans- and cis-nonachlor, p,p'- and o,p-DDT, DDD, DDE as well as hexachlorobenzene (HCB) were selected. The monitoring program with weekly samples taken during the period 2007–2010 was coordinated with the parallel program at the Norwegian Arctic monitoring site (Zeppelin mountain, Ny-Ålesund, Svalbard) in terms of priority compounds, sampling schedule as well as analytical methods. The POP concentration levels found in Antarctica were considerably lower than Arctic atmospheric background concentrations. Similar to observations for Arctic samples, HCB is the predominant POP compound, with levels of around 22 pg m−3 throughout the entire monitoring period. In general, the following concentration distribution was found for the Troll samples analyzed: HCB > Sum HCH > Sum PCB > Sum DDT > Sum chlordanes. Atmospheric long-range transport was identified as a major contamination source for POPs in Antarctic environments. Several long-range transport events with elevated levels of pesticides and/or compounds with industrial sources were identified based on retroplume calculations with a Lagrangian particle dispersion model (FLEXPART).
Explore
Topic
- forurensning
- Antarktis (23)
- antarktispetrell (1)
- Antarktistraktaten (1)
- atmosfæren (10)
- atmosfæriske gasser (1)
- avfallshåndtering (1)
- biodiversitet (2)
- biogeokjemi (1)
- biologi (2)
- biosikkerhet (1)
- Bouvetøya (1)
- copepoder (1)
- cruiseturisme (1)
- Dronning Maud Land (9)
- fauna (1)
- fjærmygg (1)
- flora (1)
- forskningsstasjoner (2)
- forvaltning (1)
- fugler (1)
- geologi (1)
- hav (1)
- havis (2)
- hoppekreps (1)
- hydrokarboner (1)
- innlandsis (1)
- isbreer (1)
- isbrem (1)
- iskjerner (1)
- jord (1)
- jus (1)
- kartlegging (1)
- kjemi (2)
- kjemiske analyser (3)
- klimaendringer (3)
- klimamodeller (1)
- klimatologi (1)
- krill (3)
- kromatografi (1)
- målinger (2)
- marin biologi (3)
- marine økosystemer (3)
- massespektrometri (1)
- menneskelig påvirkning (5)
- meteorologi (3)
- mikrobiologi (1)
- mikroplast (2)
- miljø (4)
- miljøendringer (2)
- miljøgifter (15)
- miljøovervåking (2)
- miljøpåvirkning (1)
- miljørett (1)
- miljøvern (6)
- NARE 2000/01 (1)
- naturvern (1)
- nevrobiologi (3)
- næringskjede (1)
- observasjoner (1)
- økologi (5)
- økologiske nisjer (1)
- økosystemer (5)
- økotoksikologi (2)
- ornitologi (7)
- ozonlaget (2)
- pelsseler (1)
- petreller (3)
- petroleum (1)
- pinnipedier (1)
- plankton (2)
- plastpartikler (1)
- polarområdene (13)
- reproduksjon (2)
- Rosshavet (1)
- sjøfugler (5)
- sjøis (2)
- skadeforebygge (1)
- Sørishavet (7)
- sporgass (1)
- stabile isotoper (1)
- stratosfæren (1)
- stresshormoner (1)
- toksikologi (3)
- Troll forskningsstasjon (4)
- tungmetaller (1)
- turisme (1)
- utslipp (2)
- zoologi (4)
Resource type
- Book (1)
- Book Section (3)
- Conference Paper (1)
- Document (1)
- Journal Article (32)