Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 13 resources
-
ABSTRACT Here, we examined the occurrence of plant-associated aerobic anoxygenic phototrophic bacteria (AAPB) across polar regions. Recently found in polar soils and cold-climate plants, AAPBs are photoheterotrophs that rely on environmental organic carbon but capture solar energy via anoxygenic photosynthesis. We revealed the abundance of AAPBs by extracting bacteria from plant tissues and imaging the colonies with bacteriochlorophyll-based near-infrared fluorescence. The taxonomic distribution of AAPBs was determined via 16S rRNA gene analysis. From the northern hemisphere, we describe AAPBs from the leaf endo- and phyllospheres of numerous sub- and Arctic plant species in Northern Finland, Svalbard, and Greenland. In the southern hemisphere, we focused on AAPBs in the root and leaf endospheres and the phyllospheres of Deschampsia antarctica in Chilean Patagonia and maritime Antarctica. Additionally, we describe AAPB from the tissues of several other plant species in Patagonia. We found AAPBs commonly associated with the sampled plant species across both hemispheres. A diversity of Alphaproteobacteria was found to contain the AAP capability: at all sampling sites, Sphingomonas was the most abundant taxon (up to 60%), while Methylobacteria made up a notable proportion of sub-Arctic and sub-Antarctic AAPB samples (up to 32%). In contrast to previous studies describing Methylobacteria frequently in various plant communities, AAP-containing Methylobacteria were virtually absent from our high-latitude sites. With diverse AAPB taxa found ubiquitously across polar regions and plant tissues, our results call attention to the potential ecological interaction between AAPBs and their plant hosts.
-
The morphology and molecular study of the penguin brain are crucial to define its survival in the extreme conditions of Antarctica. The present study focusses on extracting different optical parameters of the penguin brain using label-free optical imaging and spectroscopic techniques. In label-free optical imaging, we have used quantitative phase imaging, which provides morphological information about the neurons in brain tissue, giving the quantitative phase value of 5 to 20 radians corresponding to the 8 µm tissue section. In label-free spectroscopic techniques, we have used autofluorescence and Raman spectroscopy. Autofluorescence spectroscopy provides molecular information about nicotinamide dinucleotide, flavins, lipofuscins, and porphyrins in the brain’s spectral range of 420 nm to 700 nm. Raman spectroscopy provides multiple peaks associated with different molecules in the brain; among them, few signals are observed at approximately 1305 cm−1, 1448 cm−1, and 1661 cm−1, which correspond to vibrational modes indicative of vibrational features within lipids and protein structures, as well as the presence of amide groups within brain tissue constituents. All these techniques provide the microscopic and molecular fingerprint of the penguin brain, which can be useful for understanding penguin’s anatomical, physiological, and social behavior.
-
Seabirds can disperse widely when searching for prey, particularly during nonbreeding periods. Conservation measures predominately focus on protecting breeding colonies, while spatial protection at sea is often based on knowledge of the distribution of breeding adults, despite accumulating evidence that marine habitats used by immature birds sometimes differ from those of adults. Juvenile emperor penguins from Atka Bay, west Dronning Maud Land, Antarctica, tracked immediately after fledging performed long migrations to the northern extents of the Convention for the Conservation of Antarctic Marine Living Resources subareas 48.4 and 48.6. Individuals did not remain long at their northern positions, before commencing a rapid southerly movement to within a few hundred km of the marginal ice zone (MIZ). The initial migratory movement was broadly synchronous across individuals. The southward movement and subsequent change to area-restricted searching were consistent with the MIZ representing a potentially important feeding habitat for juvenile emperor penguins. Spatio-temporal management mechanisms may be beneficial in reducing threats to these young penguins.
-
Antarctica harbors many distinctive features of life, yet much about the diversity and functioning of Antarctica?s life remains unknown. Evolutionary histories and functional ecology are well understood only for vertebrates, whereas research on invertebrates is largely limited to species descriptions and some studies on environmental tolerances. Knowledge on Antarctic vegetation cover showcases the challenges of characterizing population trends for most groups. Recent community-level microbial studies have provided insights into the functioning of life at its limits. Overall, biotic interactions remain largely unknown across all groups, restricted to basic information on trophic level placement. Insufficient knowledge of many groups limits the understanding of ecological processes on the continent. Remedies for the current situation rely on identifying the caveats of each ecological discipline and finding targeted solutions. Such precise delimitation of knowledge gaps will enable a more aware, representative, and strategic systematic conservation planning of Antarctica.
-
Algal blooms play important roles in physical and biological processes on glacial surfaces. Despite this, their occurrence and impacts within an Antarctic context remain understudied. Here, we present evidence of the large-scale presence, diversity and bioalbedo effects of algal blooms on Antarctic ice cap systems based on fieldwork conducted on Robert Island (South Shetland Islands, Antarctica). Algal blooms are observed covering up to 2.7 km2 (~20%) of the measured area of the Robert Island ice cap, with cell densities of up to 1.4 × 106 cells ml−1. Spectral characterisation reveal that these blooms increase melting of the ice cap surface, contributing up to 2.4% of total melt under the observed conditions. Blooms are composed of typical cryoflora taxa, dominated by co-occurring Chlorophyceae, Trebouxiophyceae, and Ancylonema. However, morphological variation and genetic diversity in Ancylonema highlight the influence of regional endemism and point to a large and under-characterised diversity in Antarctic cryoflora.
-
Understanding how Antarctica is changing and how these changes influence the rest of the Earth is fundamental to the future robustness of human society. Strengthening our understanding of these changes and their implications requires dedicated, sustained and coordinated observations of key Antarctic indicators. The Troll Observing Network (TONe), now under development, is Norway’s contribution to the global need for sustained, coordinated, complementary and societally relevant observations from Antarctica. When fully implemented within the coming three years, TONe will be a state-of-the-art, multi-platform, multi-disciplinary observing network in data-sparse Dronning Maud Land. A critical part of the network is a data management system that will ensure broad, free access to all TONe data to the international research community.
-
Per and polyfluoroalkyl substances (PFASs) are found in Antarctic wildlife, with high levels in the avian top predator south polar skua (Catharacta maccormicki). As increasing PFAS concentrations were found in the south polar skua during the breeding season in Antarctica, we hypothesised that available prey during the breeding period contributes significantly to the PFAS contamination in skuas. To test this, we compared PFAS in south polar skuas and their main prey from two breeding sites on opposite sides of the Antarctic continent: Antarctic petrel (Thalassoica antarctica) stomach content, eggs, chicks, and adults from Svarthamaren in Dronning Maud Land and Adélie penguin chicks (Pygoscelis adeliae) from Dumont d’Urville in Adélie Land. Of the 22 PFAS analysed, seven were present in the majority of samples, except petrel stomach content [only perfluoroundecanoate (PFUnA) present] and Adélie penguins (only four compounds present), with increasing concentrations from the prey to the skuas. The biomagnification factors (BMFs) were higher at Dumont d’Urville than Svarthamaren. When adjusted to reflect one trophic level difference, the BMFs at Svarthamaren remained the same, whereas the ones at Dumont d’Urville doubled. At both the colonies, the skua PFAS pattern was dominated by perfluorooctanesulfonic acid (PFOS), followed by PFUnA, but differed with the presence of branched PFOS and perfluorotetradecanoate (PFTeA) and lack of perfluorononanoate (PFNA) and perfluorodecanoate (PFDA) at Dumont d’Urville. At Svarthamaren, the pattern in the prey was comparable to the skuas, but with a higher relative contribution of PFTeA in prey. At Dumont d’Urville, the pattern in the prey differed from the skuas, with the domination of PFUnA and the general lack of PFOS in prey. Even though the PFAS levels are low in Antarctic year-round resident prey, the three lines of evidence (pattern, BMF difference, and BMF adjusted to one trophic level) suggest that the Antarctic petrel are the significant source of PFAS in the Svarthamaren skuas, whereas the skuas in Dumont d’Urville have other important sources to PFAS than Adélie penguin, either in the continent or external on the inter-breeding foraging grounds far from Antarctica.
-
Individual heterogeneity in foraging behaviour determines how individuals and populations respond to changes in the availability and distribution of resources. Antarctic krill Euphausia superba is a pivotal species in Southern Ocean food webs and an important target for Southern Ocean fisheries. Changes in its abundance could dramatically impact marine predators, with effects depending on the extent to which all individuals rely on krill as prey. The Antarctic petrel Thalassoica antarctica is a high latitude seabird thought to be dependent on krill in part of its breeding range. Here, by combining fine-scale GPS tracking of petrel foraging trips with diet data, we examined the level and consistency of inter-individual variation in foraging strategies in breeding Antarctic petrels in Dronning Maud Land, Antarctica, and assessed whether all individuals share a similar reliance on Antarctic krill. We found that Antarctic petrels showed high levels of repeatability in their diet and foraging movements at sea, indicating consistent individual differences in foraging strategies. During consecutive foraging trips, petrels tend to make trips of similar lengths and durations to reach similar terminal locations and to feed on similar prey. These individual differences in diet were spatially structured, with individuals travelling towards the west consuming a more fish-based diet. These different foraging tactics did not appear to be associated with different costs and/or benefits as adult body mass, chick survival and chick growth were unrelated to birds’ foraging movements and diet. Our results show that, even if a large part of the population may be dependent on krill, some individuals specialize on fish. Such inter-individual variation in foraging suggests that this population could be more resilient to changes in the marine environment, such as a decline in krill abundance or a shift in krill distributions.
-
Despite the exclusion of the Southern Ocean from assessments of progress towards achieving the Convention on Biological Diversity (CBD) Strategic Plan, the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) has taken on the mantle of progressing efforts to achieve it. Within the CBD, Aichi Target 11 represents an agreed commitment to protect 10% of the global coastal and marine environment. Adopting an ethos of presenting the best available scientific evidence to support policy makers, CCAMLR has progressed this by designating two Marine Protected Areas in the Southern Ocean, with three others under consideration. The region of Antarctica known as Dronning Maud Land (DML; 20°W to 40°E) and the Atlantic sector of the Southern Ocean that abuts it conveniently spans one region under consideration for spatial protection. To facilitate both an open and transparent process to provide the vest available scientific evidence for policy makers to formulate management options, we review the body of physical, geochemical and biological knowledge of the marine environment of this region. The level of scientific knowledge throughout the seascape abutting DML is polarized, with a clear lack of data in its eastern part which is presumably related to differing levels of research effort dedicated by national Antarctic programmes in the region. The lack of basic data on fundamental aspects of the physical, geological and biological nature of eastern DML make predictions of future trends difficult to impossible, with implications for the provision of management advice including spatial management. Finally, by highlighting key knowledge gaps across the scientific disciplines our review also serves to provide guidance to future research across this important region.
-
The flightless midge Eretmoptera murphyi is thought to be continuing its invasion of Signy Island via the treads of personnel boots. Current boot-wash biosecurity protocols in the Antarctic region rely on microbial biocides, primarily Virkon® S. As pesticides have limited approval for use in the Antarctic Treaty area, we investigated the efficacy of Virkon® S in controlling the spread of E. murphyi using boot-wash simulations and maximum threshold exposures. We found that E. murphyi tolerates over 8 h of submergence in 1% Virkon® S. Higher concentrations increased effectiveness, but larvae still exhibited > 50% survival after 5 h in 10% Virkon® S. Salt and hot water treatments (without Virkon® S) were explored as possible alternatives. Salt water proved ineffective, with mortality only in first-instar larvae across multi-day exposures. Larvae experienced 100% mortality when exposed for 10 s to 50°C water, but they showed complete survival at 45°C. Given that current boot-wash protocols alone are an ineffective control of this invasive insect, we advocate hot water (> 50°C) to remove soil, followed by Virkon® S as a microbial biocide on ‘clean’ boots. Implications for the spread of invasive invertebrates as a result of increased human activity in the Antarctic region are discussed.
-
There is a paucity of information on the foraging ecology, especially individual use of sea-ice features and icebergs, over the non-breeding season in many seabird species. Using geolocators and stable isotopes, we defined the movements, distribution and diet of adult Antarctic petrels Thalassoica antarctica from the largest known breeding colony, the inland Svarthamaren, Antarctica. More specifically, we examined how sea-ice concentration and free-drifting icebergs affect the distribution of Antarctic petrels. After breeding, birds moved north to the marginal ice zone (MIZ) in the Weddell sector of the Southern Ocean, following its northward extension during freeze-up in April, and they wintered there in April–August. There, the birds stayed predominantly out of the water (60–80% of the time) suggesting they use icebergs as platforms to stand on and/or to rest. Feather δ15N values encompassed one full trophic level, indicating that birds fed on various proportions of crustaceans and fish/squid, most likely Antarctic krill Euphausia superba and the myctophid fish Electrona antarctica and/or the squid Psychroteuthis glacialis. Birds showed strong affinity for the open waters of the northern boundary of the MIZ, an important iceberg transit area, which offers roosting opportunities and rich prey fields. The strong association of Antarctic petrels with sea-ice cycle and icebergs suggests the species can serve, year-round, as a sentinel of environmental changes for this remote region.
-
In February 2019, during fieldwork at Harmony Point, Nelson Island, South Shetland Islands, Antarctica, a large population of the rare liverwort Hygrolembidium isophyllum (Lepidoziaceae) was discovered. The occurrence of this rare species reinforces the need to preserve Antarctic Specially Protected Area 133.
-
The Retrospective Analysis of Antarctic Tracking Data (RAATD) is a Scientific Committee for Antarctic Research project led jointly by the Expert Groups on Birds and Marine Mammals and Antarctic Biodiversity Informatics, and endorsed by the Commission for the Conservation of Antarctic Marine Living Resources. RAATD consolidated tracking data for multiple species of Antarctic meso- and top-predators to identify Areas of Ecological Significance. These datasets and accompanying syntheses provide a greater understanding of fundamental ecosystem processes in the Southern Ocean, support modelling of predator distributions under future climate scenarios and create inputs that can be incorporated into decision making processes by management authorities. In this data paper, we present the compiled tracking data from research groups that have worked in the Antarctic since the 1990s. The data are publicly available through biodiversity.aq and the Ocean Biogeographic Information System. The archive includes tracking data from over 70 contributors across 12 national Antarctic programs, and includes data from 17 predator species, 4060 individual animals, and over 2.9 million observed locations.
Explore
Topic
- biologi
- anatomi (1)
- Antarktis (9)
- biodiversitet (2)
- biofysikk (2)
- biogeografi (3)
- biogeokjemi (1)
- biomarkører (1)
- biomonitorering (1)
- biosikkerhet (1)
- datainnsamling (1)
- Dronning Maud Land (5)
- fjærmygg (1)
- forskningsinfrastruktur (1)
- forurensning (1)
- fysikk (1)
- fysiologi (1)
- geologi (1)
- geolokalisering (1)
- havis (1)
- internasjonal samarbeid (1)
- isberg (1)
- isfjell (1)
- kjemi (1)
- klimaendringer (2)
- kryosfæren (1)
- levermoser (1)
- marine økosystemer (1)
- mikroorganismer (2)
- miljøendringer (1)
- miljøpåvirkning (1)
- miljøvern (1)
- morfologi (1)
- nevrologi (1)
- økologi (6)
- økosystem (1)
- økosystemer (2)
- ornitologi (4)
- oseanografi (1)
- petreller (3)
- pingviner (2)
- planter (1)
- polarområdene (1)
- sjøfugler (4)
- sjøis (1)
- snøalger (1)
- Sør-Shetlandsøyene (1)
- Sørishavet (4)
- telemetri (1)
- Troll forskningsstasjon (1)
- Weddellhavet (1)
- zoologi (1)
Resource type
- Journal Article (13)
Publication year
Online resource
- yes (13)