Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Your search

Topic

Results 18 resources

  • Submarine groundwater discharge (SGD) measurements have been limited along the Antarctic coast, although groundwater discharge is becoming recognized as an important process in the Antarctic. Quantifying this meltwater pathway is important for hydrologic budgets, ice mass balances and solute delivery to the coastal ocean. Here, we estimate the combined discharge of subglacial and submarine groundwater to the Antarctic coastal ocean. SGD, including subglacial and submarine groundwater, is quantified along the WAP at the Marr Glacier terminus using the activities of naturally occurring radium isotopes (223Ra, 224Ra). Estimated SGD fluxes from a 224Ra mass balance ranged from (0.41 ± 0.14)×104 and (8.2 ± 2.3)×104m3 d−1. Using a salinity mass balance, we estimate SGD contributes up to 32% of the total freshwater to the coastal environment near Palmer Station. This study suggests that a large portion of the melting glacier may be infiltrating into the bedrock and being discharged to coastal waters along the WAP. Meltwater infiltrating as groundwater at glacier termini is an important solute delivery mechanism to the nearshore environment that can influence biological productivity. More importantly, quantifying this meltwater pathway may be worthy of attention when predicting future impacts of climate change on retreat of tidewater glaciers.

  • The Weddell Gyre (WG) is one of the main oceanographic features of the Southern Ocean south of the Antarctic Circumpolar Current which plays an influential role in global ocean circulation as well as gas exchange with the atmosphere. We review the state-of-the art knowledge concerning the WG from an interdisciplinary perspective, uncovering critical aspects needed to understand this system's role in shaping the future evolution of oceanic heat and carbon uptake over the next decades. The main limitations in our knowledge are related to the conditions in this extreme and remote environment, where the polar night, very low air temperatures, and presence of sea ice year-round hamper field and remotely sensed measurements. We highlight the importance of winter and under-ice conditions in the southern WG, the role that new technology will play to overcome present-day sampling limitations, the importance of the WG connectivity to the low-latitude oceans and atmosphere, and the expected intensification of the WG circulation as the westerly winds intensify. Greater international cooperation is needed to define key sampling locations that can be visited by any research vessel in the region. Existing transects sampled since the 1980s along the Prime Meridian and along an East-West section at ~62°S should be maintained with regularity to provide answers to the relevant questions. This approach will provide long-term data to determine trends and will improve representation of processes for regional, Antarctic-wide, and global modeling efforts—thereby enhancing predictions of the WG in global ocean circulation and climate.

  • The Rosenthal Islands lie along the western edge of the Antarctic Peninsula. They are largely inaccessible and the few research projects in the area have focused on seabird colonies, so nothing has been known about the arthropod fauna on these islands. We conducted a preliminary survey of the arthropods associated with large penguin colonies. We identified two species of Collembola (Cryptopygus antarcticus and Friesea grisea), four species of mites (Alaskozetes antarcticus, Hydrogamasellus racovitzai, Tectopenthalodes villosus and Rhagidia sp.) and one insect (Belgica antarctica). The mite A. antarcticus and the collembolan C. antarcticus were common in large aggregations at our collecting sites and were occasionally observed on the surface of penguin guano without vegetative cover. The insect, a chironomid midge, was less common and found only in vegetated areas.

  • Babesia spp. are tick-borne parasites, and 16 avian-infecting species have been described to date, including one species ( Babesia peircei ) that infects penguins. Considering the results of a recent study reporting Babesia sp. in penguins on Deception Island, South Shetland Islands, we re-examined the samples obtained in a previous investigation on the occurrence of blood parasites in adult Adélie ( Pygoscelis adeliae ), chinstrap ( Pygoscelis antarcticus ) and gentoo penguins ( Pygoscelis papua ) on King George and Elephant islands, South Shetland Islands. Notwithstanding a comprehensive re-examination of the blood smears, Babesia sp. was not detected. When we employed two nested PCR tests targeting the 18S rRNA gene of Babesia , a considerable proportion of the samples produced positive results; however, gene sequencing revealed these were due to cross-amplification of non-target organisms. We therefore did not detect Babesia sp. infection in penguins on King George and Elephant islands. Additional studies will be valuable to clarify the distribution and epidemiology of tick-borne pathogens in sub-Antarctic and Antarctic seabirds.

  • Using GC Orbitrap mass spectrometry to address analytical challenges with trace level detection of persistent organic pollutants in Antarctica.

  • In polar seas, the seasonal melting of ice triggers the development of an open-waterecosystem characterized by short-lived algal blooms, the grazing and development of zooplank-ton, and the influx of avian and mammalian predators. Spatial heterogeneity in the timing of icemelt generates temporal variability in the development of these events across the habitat, offeringa natural framework to assess how foraging marine predators respond to the spring phenology.We combined 4 yr of tracking data of Antarctic petrels Thalassoica antarcticawith synopticremote-sensing data on sea ice and chlorophyll ato test how the development of melting ice andprimary production drive Antarctic petrel foraging. Cross-correlation analyses of first-passagetime revealed that Antarctic petrels utilized foraging areas with a spatial scale of 300 km. Theseareas changed position or disappeared within 10 to 30 d and showed no spatial consistency amongyears. Generalized additive model (GAM) analyses suggested that the presence of foraging areaswas related to the time since ice melt. Antarctic petrels concentrated their search effort in meltingareas and in areas that had reached an age of 50 to 60 d from the date of ice melt. We found nosignificant relationship between search effort and chlorophyll aconcentration. We suggest thatthese foraging patterns were related to the vertical distribution and profitability of the main prey,the Antarctic krill Euphausia superba. Our study demonstrates that the annual ice melt in theSouthern Ocean shapes the development of a highly patchy and elusive food web, underscoringthe importance of flexible foraging strategies among top predators. KEY WORDS: Area-restricted search · Euphausia superba· Marginal ice zone · Phytoplanktonbiomass · Procellariiformes · Sea ice dynamics · Southern Ocean · Thalassoica antarctica

  • The continental shelf of Antarctica harbours rich suspension-feeding macroinvertebrate communities that are continuously exposed to large populations of free-living microbes. To avoid settlement or fouling by undesirable microorganisms that could cause infection or collapse filter-feeding systems, these macroinvertebrates might regulate the epibiotic microbial mat through chemical interactions. In Antarctic chemical ecology, the antibacterial roles of natural products remain mostly unknown. A necessary first step is to identify organisms that produce compounds with potential ecological relevance. For that reason, we tested the crude organic extracts of 116 taxa of Antarctic benthic organisms for antibacterial activity against a panel of seven strains of marine bacteria. Nine out of 11 phyla tested had antibacterial properties. However, inhibitory activity was quite selective and species-specific. These patterns suggest that Antarctic benthic organisms may produce diverse bioactive metabolites with different antibacterial activities or, alternatively, those contrasting profiles may be shaped by environmental and biological interactions acting at a small spatial scale. The reasons of such selectivity remain to be further investigated and may contribute to the identification of bioactive compounds with pharmaceutical applications.

  • The koilin membrane, formed by the secretions of the ventricular and pyloric glands, functions as a protective layer in the gizzards of most bird species. However, the ecological functions of koilin have never been studied in free-ranging penguins. During the two austral summers from 2012 to 2014, we observed the regurgitated koilins of chinstrap penguins (Pygoscelis antarcticus) at Narębski Point on King George Island, South Shetland Islands, and we detected a significant difference in the daily accumulation of regurgitated koilins between the pre-hatching and post-hatching periods in the rookery. We also found 233 gastrointestinal parasites, all Stegophorus macronectes (Nematoda, Acuariidae), from 26 out of 45 koilins freshly regurgitated by chinstrap penguins. We suggest that the regurgitation of koilins may benefit adult chinstrap penguins in the wild by reducing parasitic loads when they fast during incubation; it may also help decrease the risk of parasite transmission to chicks. Our results present the first observations of regurgitated koilins among breeding chinstrap penguins. How koilin regurgitation functions in penguins requires further study. Among the gentoo penguins (P. papua) co-occurring at the study site, we observed no regurgitated koilin layers. Keywords: Cuticula gastris; host-parasite interaction; nematodes; parasitic load; regurgitation; Stegophorus macronectes.

  • It is established that haematological and biochemical parameters provide important data to assess the physiological condition and health status of wild birds. To undertake conservation physiology or ecophysiology work, it is therefore essential to establish baseline physiological parameters and how these parameters change with age and life history events. In this work, we determined and compared baseline haematology and serum biochemistry between adults and chicks of three Antarctic penguin species of the genus Pygoscelis: gentoo (P. papua), Adélie (P. adeliae) and chinstrap (P. antarcticus). Differences in adults among species were observed in haemoglobin and biochemical parameters such as total proteins, glucose and alkaline phosphatase activity. In addition, differences between adults and chicks in haematocrit, haemoglobin, total proteins and glucose concentration were determined. Moreover, we evaluated the electrophoretic protein profiles between adults and chicks of the genus Pygoscelis, and a conserved protein pattern was observed among species and ages in the genus. Altogether, the results suggest that biochemical and haematological differences among pygoscelids may be related to the nutritional status and energetic expenditure during breeding as well as their feeding habits and development stage. Keywords: Antarctic; haematology; physiology; Pygoscelis; penguins; serum biochemistry.

  • Tests of biodiversity theory have been controversial partly because alternative formulations of the same theory seemingly yield different conclusions. This has been a particular challenge for neutral theory, which has dominated tests of biodiversity theory over the last decade. Neutral theory attributes differences in species abundances to chance variation in individuals’ fates, rather than differences in species traits. By identifying common features of different neutral models, we conduct a uniquely robust test of neutral theory across a global dataset of marine assemblages. Consistently, abundances vary more among species than neutral theory predicts, challenging the hypothesis that community dynamics are approximately neutral, and implicating species differences as a key driver of community structure in nature.Explaining patterns of commonness and rarity is fundamental for understanding and managing biodiversity. Consequently, a key test of biodiversity theory has been how well ecological models reproduce empirical distributions of species abundances. However, ecological models with very different assumptions can predict similar species abundance distributions, whereas models with similar assumptions may generate very different predictions. This complicates inferring processes driving community structure from model fits to data. Here, we use an approximation that captures common features of “neutral” biodiversity models—which assume ecological equivalence of species—to test whether neutrality is consistent with patterns of commonness and rarity in the marine biosphere. We do this by analyzing 1,185 species abundance distributions from 14 marine ecosystems ranging from intertidal habitats to abyssal depths, and from the tropics to polar regions. Neutrality performs substantially worse than a classical nonneutral alternative: empirical data consistently show greater heterogeneity of species abundances than expected under neutrality. Poor performance of neutral theory is driven by its consistent inability to capture the dominance of the communities’ most-abundant species. Previous tests showing poor performance of a neutral model for a particular system often have been followed by controversy about whether an alternative formulation of neutral theory could explain the data after all. However, our approach focuses on common features of neutral models, revealing discrepancies with a broad range of empirical abundance distributions. These findings highlight the need for biodiversity theory in which ecological differences among species, such as niche differences and demographic trade-offs, play a central role.

  • The spinal column of early Antarctic penguins is poorly known, mainly due to the scarcity of articulated vertebrae in the fossil record. One of the most interesting segments of this part of the skeleton is the transitional series located at the root of the neck. Here, two such cervicodorsal series, comprising reinterpreted known material and a new specimen from the Eocene of Seymour Island (Antarctic Peninsula), were investigated and contrasted with those of modern penguins and some fossil bones. The new specimen is smaller than the counterpart elements in recent king penguins, whereas the second series belonged to a large-bodied penguin from the genus Palaeeudyptes. It had been assigned by earlier researchers to P. gunnari (a species of “giant” penguins) and a Bayesian analysis—a Bayes factor approach based on size of an associated tarsometatarsus—strongly supported such an assignment. Morphological and functional studies revealed that mobility within the aforementioned segment probably did not differ substantially between extant and studied fossil penguins. There were, however, intriguing morphological differences between the smaller fossil specimen and the comparative material related to the condition of the lateral excavation in the first cervicodorsal vertebra and the extremely small size of the intervertebral foramen located just prior to the first “true” thoracic vertebra. The former feature could have resulted from discrepancy in severity of external pneumatization. Both fossils provided valuable insights into the morphology and functioning of the axial skeleton in early penguins. Keywords: Antarctic Peninsula; La Meseta Formation; Palaeogene; early Sphenisciformes; cervicodorsal vertebrae.

  • The aim of the study was to specify the concentration of selected chemical elements in surface waters of King George Island, off the western coast of the Antarctic Peninsula. The research encompassed six streams, a lake and an artificial water reservoir located on the western coast of Admiralty Bay. Measured hydrochemical parameters included pH, conductivity, total dissolved solids (TDS), and total and dissolved forms elements such as Al, Co, Ni, Cu, Zn, Cd, Pb, Mn, Fe, As and Se. The values of pH, conductivity and TDS had the following ranges: 6.09–8.21, 6.0–875 µS cm−1 and 7.0–975 mg/L, respectively, and were typical for surface waters of Antarctica. Wide disparities were discovered regarding concentrations of the investigated elements, ranging from <0.01 µg/L for Cd to 510 µg/L for Fe, and differing from one water body to another. The investigated elements are discussed with reference to environmental conditions and anthropogenic factors. Concentrations of total and dissolved forms of elements are considered in connection with the composition of soil in their surroundings and with atmospheric deposition, mostly such as that took place locally. The increased levels of Pb and Zn concentrations in the immediate proximity of a research station suggested anthropogenic contamination. Keywords: Antarctic surface waters; total and dissolved elements; baseline elements values; anthropogenic metal contamination.

  • Effective management of contaminated land requires a sound understanding of site geology, chemistry and biology. This is particularly the case for Antarctica and the Arctic, which function using different legislative frame- works to those of industrialized, temperate environments and are logistically challenging environments to operate in. This paper reviews seven remediation technologies currently used, or demonstrating potential for on-site or in situ use at metal-contaminated sites in polar environments, namely permeable reactive barriers (PRB), chemical fixation, bioremediation, phytoremediation, electrokinetic separation, land capping, and pump and treat systems. The technologies reviewed are discussed in terms of their advantages, limitations and overall potential for the management of metal-contaminated sites in Antarctica and the Arctic. This review demonstrates that several of the reviewed technologies show potential for on-site or in situ usage in Antarctica and the Arctic. Of the reviewed technologies, chemical fixation and PRB are particularly promising technologies for metal-contaminated sites in polar environments. However, further research and relevant field trials are required before these technologies can be considered proven techniques. Keywords: Polar; heavy metals; remediation; contaminants; in situ

  • A previously uncultured cyanobacterium, strain KNUA009, was axenically isolated from a meltwater stream on Barton Peninsula, King George Island, South Shetland Islands, Antarctica. Molecular evidences showed that the isolate belongs to groups of globally distributed cryosphere cyanobacterial clones and this new isolate represents the first laboratory culture to be assigned to these groups. Strain KNUA009 was able to thrive at low temperatures ranging between 5°C and 20°C, but did not survive at temperatures of 25°C and above. As the isolate morphologically resembled Oscillatoria species, it is suggested that this cyanobacterium may represent a new species clade with cold resistance within the genus Oscillatoria. Keywords: Barton Peninsular; cryosphere cyanobacteria; King George Island; uncultured Oscillatoria species.

  • Winter climate and snow cover are the important drivers of plant community development in polar regions. However, the impacts of changing winter climate and associated changes in snow regime have received much less attention than changes during summer. Here, we synthesize the results from studies on the impacts of extreme winter weather events on polar heathland and lichen communities. Dwarf shrubs, mosses and soil arthropods were negatively impacted by extreme warming events while lichens showed variable responses to changes in extreme winter weather events. Snow mould formation underneath the snow may contribute to spatial heterogeneity in plant growth, arthropod communities and carbon cycling. Winter snow cover and depth will drive the reported impacts of winter climate change and add to spatial patterns in vegetation heterogeneity. The challenges ahead lie in obtaining better predictions on the snow patterns across the landscape and how these will be altered due to winter climate change.

  • The McMurdo Dry Valleys are one of the most arid environments on Earth. Over the soil landscape for the majority of the year, biological and ecosystem processes in the dry valleys are constrained by the low temperatures and limited availability of water. The prevalence of these physical limitations in controlling biological and ecosystem processes makes the dry valleys a climatesensitive system, poised to experience substantial changes following projected future warming. Short-duration increases in summer temperatures are associated with pulses of water from melting ice reserves, including glaciers, snow and permafrost. Such pulses alter soil geochemistry by mobilizing and redistributing soil salts (via enhanced weathering, solubility and mobility), which can alter habitat suitability for soil organisms. Resulting changes in soil community composition or distribution may alter the biogeochemical processes in which they take part. Here, we review the potential impacts of meltwater pulses and present new field data documenting instances of meltwater pulse events that result from different water sources and hydrological patterns, and discuss their potential influence on soil biology and biogeochemistry. We use these examples to discuss the potential impacts of future climate change on the McMurdo Dry Valley soil ecosystem.Keywords: Water pulse; climate change; polar desert; International Polar Year; discrete warming events; soil biogeochemistry.

  • The colonization capacity and demographic structure of populations of Deschampsia antarctica and Colobanthus quitensis were studied in different microhabitats between 10 and 147 m a.s.l. on Livingston Island, South Shetland Islands, near the Spanish Antarctic base Juan Carlos I, in February 2002. At the highest site (147 m a.s.l.), mean temperatures were about 1 ºC lower than at sea level. Both species are less common in inland areas and at the highest altitudes only occur at restricted sites that are frequently snow-free in the early austral summer. The diameters of the largest plants (C. quitensis cushions 7-8 cm ; D. antarctica tufts 10-11 cm) in the populations growing at the highest altitudes (110 and 147 m a.s.l.) suggest that these populations were established about 24-28 years ago. The largest diameter plants (Deschampsia 20 cm; Colobanthus 18 cm) were found at the lowest altitudes on deep soil. The presence of numerous seedlings and young individuals on the periphery of populations established several years ago or at recently colonized sites suggests an active process of expansion. There were more emerged seedlings of C. quitensis than of D. antarctica, but the density of established individuals was higher for D. antarctica, suggesting these species have different demographic strategies. Keywords: Antarctic vascular plants; altitude and habitat effect; colonization; population structure.

Last update from database: 3/1/25, 3:17 AM (UTC)