Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Your search

Results 7 resources

  • The existence of ice-edge phytoplankton blooms in the Southern Ocean is well described, yet direct observations of the mechanisms of phytoplankton bloom development following seasonal sea-ice melt remain scarce. This study constrains such responses using biological and biogeochemical datasets collected along a coastal-to-offshore transect that bisects the receding sea-ice zone in the Kong Håkon VII Hav (off the coast of Dronning Maud Land). We documented that the biogeochemical growing conditions for phytoplankton vary on a latitudinal gradient of sea-ice concentration, where increased sea-ice melting creates optimal conditions for growth with increased light availability and potentially increased iron supply. The zones of the study area with the least ice cover were associated with diatom dominance, the greatest chlorophyll a concentrations, net community production, and dissolved inorganic carbon drawdown, as well as lower sea surface fugacity of CO2. Together, these associations imply higher potential for an oceanic CO2 sink due, at least in part, to more advanced bloom phase and/or larger bloom magnitude stemming from a relatively longer period of light exposure, as compared to the more ice-covered zones in the study area. From stable oxygen isotope fractions, sea-ice meltwater fractions were highest in the open ocean zone and meteoric meltwater fractions were highest in the coastal and polynya zones, suggesting that potential iron sources may also change on a latitudinal gradient across the study area. Variable phytoplankton community compositions were related to changing sea-ice concentrations, with a typical species succession from sympagic flagellate species (Pyramimonas sp. and Phaeocystis antarctica) to pelagic diatoms (e.g., Dactyliosolen tenuijunctus) observed across the study area. These results fill a spatiotemporal gap in the Southern Ocean, as sea-ice melting plays a larger role in governing phytoplankton bloom dynamics in the future Southern Ocean due to changing sea-ice conditions caused by anthropogenic global warming.

  • Antarctica is the coldest, windiest and least inhabited place on Earth. One of its most enigmatic regions is scoured by katabatic winds blue ice that covers 235,000 km2 of the Antarctic fringe. Here, we demonstrate that contrary to common belief, high-altitude inland blue ice areas are not dry, nor barren. Instead, they promote sub-surface melting that enables them to become “powerplants” for water, nutrients, carbon and major ions production. Mapping cryoconite holes at an unprecedented scale of 62 km2 also revealed a regionally significant resource of dissolved nitrogen, phosphorus (420 kg km−2), dissolved carbon (1323 kg km−2), and major ions (6672 kg km−2). We discovered that unlike on glaciers, creation of cryoconite holes and their chemical signature on the ice sheet is governed by ice movement and bedrock geology. Blue ice areas are near-surface hotspots of microbial life within cryoconite holes. Bacterial communities they support are unexpectedly diverse. We also show that near-surface aquifers can exist in blue ice outside cryoconite holes. Identifying blue ice areas as active ice sheet ecosystems will help us understand the role ice sheets play in Antarctic carbon cycle, development of near-surface drainage system, and will expand our perception of the limits of life.

  • Much of the Antarctic coast is covered by seasonal landfast sea ice (fast ice), which serves as an important habitat for ice algae. Fast-ice algae provide a key early season food source for pelagic and benthic food webs, and contribute to biogeochemical cycling in Antarctic coastal ecosystems. Summertime fast ice is undergoing a decline, leading to more seasonal fast ice with unknown impacts on interconnected Earth system processes. Our understanding of the spatiotemporal variability of Antarctic fast ice, and its impact on polar ecosystems is currently limited. Evaluating the overall productivity of fast-ice algae has historically been hampered by limitations in observations and models. By linking new fast-ice extent maps with a one-dimensional sea-ice biogeochemical model, we provide the first estimate of the spatio-seasonal variability of Antarctic fast-ice algal gross primary production (GPP) and its annual primary production on a circum-Antarctic scale. Experiments conducted for the 2005?2006 season provide a mean fast ice-algal production estimate of 2.8 Tg C/y. This estimate represents about 12% of overall Southern Ocean sea-ice algae production (estimated in a previous study), with the mean fast-ice algal production per area being 3.3 times higher than that of pack ice. Our Antarctic fast-ice GPP estimates are probably underestimated in the Ross Sea and Weddell Sea sectors because the sub-ice platelet layer habitats and their high biomass are not considered.

  • Sea ice forms a barrier to the exchange of energy, gases, moisture and particles between the ocean and atmosphere around Antarctica. Ice temperature, salinity and the composition of ice crystals determine whether a particular slab of sea ice is habitable for microorganisms and permeable to exchanges between the ocean and atmosphere, allowing, for example, carbon dioxide (CO2) from the atmosphere to be absorbed or outgassed by the ocean. Spring sea ice can have high concentrations of algae and absorb atmospheric CO2. In the summer of 2016?2017 off East Antarctica, we found decayed and porous granular ice layers in the interior of the ice column, which showed high algal pigment concentrations. The maximum chlorophyll a observed in the interior of the ice column was 67.7 ?g/L in a 24% porous granular ice layer between 0.8 and 0.9 m depth in 1.7 m thick ice, compared to an overall mean sea-ice chlorophyll a (± one standard deviation) of 13.5 ± 21.8 ?g/L. We also found extensive surface melting, with instances of snow meltwater apparently percolating through the ice, as well as impermeable superimposed ice layers that had refrozen along with melt ponds on top of the ice. With future warming, the structures we describe here could occur earlier and/or become more persistent, meaning that sea ice would be more often characterized by patchy permeability and interior ice algal accumulations.

  • Despite the exclusion of the Southern Ocean from assessments of progress towards achieving the Convention on Biological Diversity (CBD) Strategic Plan, the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) has taken on the mantle of progressing efforts to achieve it. Within the CBD, Aichi Target 11 represents an agreed commitment to protect 10% of the global coastal and marine environment. Adopting an ethos of presenting the best available scientific evidence to support policy makers, CCAMLR has progressed this by designating two Marine Protected Areas in the Southern Ocean, with three others under consideration. The region of Antarctica known as Dronning Maud Land (DML; 20°W to 40°E) and the Atlantic sector of the Southern Ocean that abuts it conveniently spans one region under consideration for spatial protection. To facilitate both an open and transparent process to provide the vest available scientific evidence for policy makers to formulate management options, we review the body of physical, geochemical and biological knowledge of the marine environment of this region. The level of scientific knowledge throughout the seascape abutting DML is polarized, with a clear lack of data in its eastern part which is presumably related to differing levels of research effort dedicated by national Antarctic programmes in the region. The lack of basic data on fundamental aspects of the physical, geological and biological nature of eastern DML make predictions of future trends difficult to impossible, with implications for the provision of management advice including spatial management. Finally, by highlighting key knowledge gaps across the scientific disciplines our review also serves to provide guidance to future research across this important region.

  • Within the framework of the Marine Ecosystem Assessment for the Southern Ocean (MEASO), this paper brings together analyses of recent trends in phytoplankton biomass, primary production and irradiance at the base of the mixed layer in the Southern Ocean and summarises future projections. Satellite observations suggest that phytoplankton biomass in the mixed-layer has increased over the last 20 years in most (but not all) parts of the Southern Ocean, whereas primary production at the base of the mixed-layer has likely decreased over the same period. Different satellite models of primary production (Vertically Generalised versus Carbon Based Production Models) give different patterns and directions of recent change in net primary production (NPP). At present, the satellite record is not long enough to distinguish between trends and climate-related cycles in primary production. Over the next 100 years, Earth system models project increasing NPP in the water column in the MEASO northern and Antarctic zones but decreases in the Subantarctic zone. Low confidence in these projections arises from: (1) the difficulty in mapping supply mechanisms for key nutrients (silicate, iron); and (2) understanding the effects of multiple stressors (including irradiance, nutrients, temperature, pCO<sub>2</sub>, pH, grazing) on different species of Antarctic phytoplankton. Notwithstanding these uncertainties, there are likely to be changes to the seasonal patterns of production and the microbial community present over the next 50–100 years and these changes will have ecological consequences across Southern Ocean food-webs, especially on key species such as Antarctic krill and silverfish.

  • The ocean's ability to take up and store CO2 is a key factor for understanding past and future climate variability. However, qualitative and quantitative understanding of surface-to-interior pathways, and how the ocean circulation affects the CO2 uptake, is limited. Consequently, how changes in ocean circulation may influence carbon uptake and storage and therefore the future climate remains ambiguous. Here we quantify the roles played by ocean circulation and various water masses in the meridional redistribution of carbon. We do so by calculating streamfunctions defined in dissolved inorganic carbon (DIC) and latitude coordinates, using output from a coupled biogeochemical-physical model. By further separating DIC into components originating from the solubility pump and a residual including the biological pump, air-sea disequilibrium, and anthropogenic CO2, we are able to distinguish the dominant pathways of how carbon enters particular water masses. With this new tool, we show that the largest meridional carbon transport occurs in a pole-to-equator transport in the subtropical gyres in the upper ocean. We are able to show that this pole-to-equator DIC transport and the Atlantic meridional overturning circulation (AMOC)-related DIC transport are mainly driven by the solubility pump. By contrast, the DIC transport associated with deep circulation, including that in Antarctic bottom water and Pacific deep water, is mostly driven by the biological pump. As these two pumps, as well as ocean circulation, are widely expected to be impacted by anthropogenic changes, these findings have implications for the future role of the ocean as a climate-buffering carbon reservoir.

Last update from database: 3/1/25, 3:17 AM (UTC)