Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 7 resources
-
In the Southern Ocean near the Antarctic Peninsula, Antarctic Circumpolar Current (ACC) fronts interact with shelf waters facilitating lateral transport of shelf-derived components such as iron into high-nutrient offshore regions. To trace these shelf-derived components and estimate lateral mixing rates of shelf water, we used naturally occurring radium isotopes. Short-lived radium isotopes were used to quantify the rates of shelf water entrainment while Fe/228Ra ratios were used to calculate the Fe flux. In the summer of 2006 we found rapid mixing and significant lateral iron export, namely, a dissolved iron flux of 1.1 × 105 mol d−1 and total acid leachable iron flux of 1.1 × 106 mol d−1 all of which is transported in the mixed layer from the shelf region offshore. This dissolved iron flux is significant, especially considering that the bloom observed in the offshore region (0.5–2 mg chl a m−3) had an iron demand of 1.1 to 4 × 105 mol Fe. Net vertical export fluxes of particulate Fe derived from 234Th/238U disequilibrium and Fe/234Th ratios accounted for only about 25% of the dissolved iron flux. On the other hand, vertical upward mixing of iron rich deeper waters provided only 7% of the lateral dissolved iron flux. We found that similarly to other studies in iron-fertilized regions of the Southern Ocean, lateral fluxes overwhelm vertical inputs and vertical export from the water column and support significant phytoplankton blooms in the offshore regions of the Drake Passage.
-
Investigations into Fe(II) cycling during two Southern Ocean mesoscale iron enrichment experiments, SOFeX and EIFeX, clearly show the importance of Fe(II) to iron speciation during these experiments. In both cases the added Fe(II) persisted significantly longer than its expected oxidation time indicating a significant Fe reduction process at work. During EIFeX diel studies showed a strong photochemically induced cycle in Fe(II) production in sunlit surface waters. Our results suggest that the photochemical cycling of iron may also be important in unfertilized waters of the Southern Ocean.
-
This study explores the changes in the surface water fugacity of carbon dioxide (fCO2) and biological carbon uptake in two Southern Ocean iron fertilisation experiments with different hydrographic regimes. The Southern Ocean Iron Release Experiment (SOIREE) experiment was carried out south of the Antarctic Polar Front (APF) at 61°S, 141°E in February 1999 in a stable hydrographic setting. The EisenEx experiment was conducted in a cyclonic eddy north of the APF at 48°S, 21°E in November 2000 and was characterised by a rapid succession of low to storm-force wind speeds and dynamic hydrographic conditions. The iron additions promoted algal blooms in both studies. They alleviated algal iron limitation during the 13-day SOIREE experiment and probably during the first 12 days of EisenEx. The fCO2 in surface water decreased at a constant rate of 3.8μatmday−1 from 4 to 5 days onwards in SOIREE. The fCO2 reduction was 35μatm after 13 days. The evolution of surface water fCO2 in the iron-enriched waters (or ‘patch’) displayed a saw tooth pattern in EisenEx, in response to algal carbon uptake in calm conditions and deep mixing and horizontal dispersion during storms. The maximum fCO2 reduction was 18–20μatm after 12 and 21 days with lower values in between. The iron-enriched waters in EisenEx absorbed four times more atmospheric CO2 than in SOIREE between 5 and 12 days, as a result of stronger winds. The total biological uptake of inorganic carbon across the patch was 1389ton C (±10%) in SOIREE and 1433ton C (±27%) in EisenEx after 12 days (1ton=106g). This similarity probably reflects the comparable size of the iron additions, as well as algal growth at a similar near-maximum growth rate in these regions. The findings imply that the different mixing regimes had less effect on the overall biological carbon uptake across the iron-enriched waters than suggested by the evolution of fCO2 in surface water.
-
The distribution and speciation of iron was determined along a transect in the eastern Atlantic sector (6°E) of the Southern Ocean during a collaborative Scandinavian/South African Antarctic cruise conducted in late austral summer (December 1997/January 1998). Elevated concentrations of dissolved iron (>0.4nM) were found at 60°S in the vicinity of the Spring Ice Edge (SIE) in tandem with a phytoplankton bloom, chiefly dominated by Phaeocystis sp. This bloom had developed rapidly after the loss of the seasonal sea ice cover. The iron that fuelled this bloom was mostly likely derived from sea ice melt. In the Winter Ice Edge (WIE), around 55°S, dissolved iron concentrations were low (<0.2nM) and corresponded to lower biological productivity, biomass. In the Antarctic Polar Front, at approximately 50°S, a vertical profile of dissolved iron showed low concentrations (<0.2nM); however, a surface survey showed higher concentrations (1–3nM), and considerable patchiness in this dynamic frontal region. The chemical speciation of iron was dominated by organic complexation throughout the study region. Organic iron-complexing ligands ([L]) ranged from 0.9 to 3.0nM Fe equivalents, with complex stability logKFeL′=21.4–23.5. Estimated concentrations of inorganic iron (Fe′) ranged from 0.03 to 0.79pM, with the highest values found in the Phaeocystis bloom in the SIE. A vertical profile of iron-complexing ligands in the WIE showed a maximum consistent with a biological source for ligand production and near surface minimum possibly consistent with loss via photodecomposition. This work further confirms the role iron that has in the Southern Ocean in limiting primary productivity.
-
A suite of standard ocean hydrographic and circulation metrics are applied to the equilibrium physical solutions from 13 global carbon models participating in phase 2 of the Ocean Carbon-cycle Model Intercomparison Project (OCMIP-2). Model-data comparisons are presented for sea surface temperature and salinity, seasonal mixed layer depth, meridional heat and freshwater transport, 3-D hydrographic fields, and meridional overturning. Considerable variation exists among the OCMIP-2 simulations, with some of the solutions falling noticeably outside available observational constraints. For some cases, model-model and model-data differences can be related to variations in surface forcing, subgrid-scale parameterizations, and model architecture. These errors in the physical metrics point to significant problems in the underlying model representations of ocean transport and dynamics, problems that directly affect the OCMIP predicted ocean tracer and carbon cycle variables (e.g., air-sea CO2 flux, chlorofluorocarbon and anthropogenic CO2 uptake, and export production). A substantial fraction of the large model-model ranges in OCMIP-2 biogeochemical fields (±25–40%) represents the propagation of known errors in model physics. Therefore the model-model spread likely overstates the uncertainty in our current understanding of the ocean carbon system, particularly for transport-dominated fields such as the historical uptake of anthropogenic CO2. A full error assessment, however, would need to account for additional sources of uncertainty such as more complex biological-chemical-physical interactions, biases arising from poorly resolved or neglected physical processes, and climate change.
-
We have investigated the intermediate water mass of the central Weddell Gyre using TCO2 and oxygen data of FS Polarstern cruises in 1992, 1996 and 1998. This water mass, designated as Central Intermediate Water (CIW), is enriched in CO2 and depleted in O-2 relative to its source water due to biological degradation. CO2 enrichment and O-2 depletion were quantified by calculating the difference between the concentrations in the CIW and those in the, more southern source water, the Circumpolar Deep Water, which derives from the Antarctic Circumpolar Current. Inventories of enrichment and depletion were determined over the whole depth range of CIW, i.e. about 200800 m. The O-2 depletion inventory was greater than that of TCO2 enrichment which is in line with a biological origin of the signal. Spatial and interannual variation appeared to be small. Because subsurface remineralization in the central Weddell Gyre is largely restricted to the CIW, the export production estimate from previous work has been applied to compute the renewal time of CIW from these inventories. A renewal time of only three years was found. TCO2- and O-2-based computations were consistent, the former showing larger variation, though. From renewal time and volume of the CIW, a transport velocity (renewal rate) of 6-7 Sv was obtained. Of this, about I Sv is upwelled into the surface layer. The remaining 5-6 Sv CIW must be exported to the north, which is opposite to previous views. Results of water mass age and transport rate have thus been obtained using a method based on biogeochemical parameters. As the CIW cannot be identified by temperature and salinity, nor with transient tracers because it is hardly ventilated, this is the only way to obtain such results. As part of the CIW export, a large amount of remineralized CO2 enters the abyssal oceans where it is sequestered for long periods of time. The CIW is a principal and highly efficient player in the biological pump mechanism of the Southern Ocean.
Explore
Topic
- biogeokjemi
- AABW (1)
- alger (1)
- Bouvetøya (1)
- ekspedisjoner (1)
- fytoplankton (2)
- geofysikk (1)
- havstrømmer (1)
- hydrografi (2)
- karbon syklus (1)
- karbondioksid (2)
- klimaendringer (1)
- marin biologi (2)
- marin kjemi (3)
- NARE 2000/01 (1)
- oseanografi (6)
- polarområdene (1)
- radiumisotoper (1)
- Sørishavet (7)
- Sørishavsstrømmen (1)
- vannmasser (1)
- Weddellhavet (1)
Resource type
- Book Section (1)
- Journal Article (6)
Publication year
Online resource
- yes (7)