Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Your search

Results 3 resources

  • Tests of biodiversity theory have been controversial partly because alternative formulations of the same theory seemingly yield different conclusions. This has been a particular challenge for neutral theory, which has dominated tests of biodiversity theory over the last decade. Neutral theory attributes differences in species abundances to chance variation in individuals’ fates, rather than differences in species traits. By identifying common features of different neutral models, we conduct a uniquely robust test of neutral theory across a global dataset of marine assemblages. Consistently, abundances vary more among species than neutral theory predicts, challenging the hypothesis that community dynamics are approximately neutral, and implicating species differences as a key driver of community structure in nature.Explaining patterns of commonness and rarity is fundamental for understanding and managing biodiversity. Consequently, a key test of biodiversity theory has been how well ecological models reproduce empirical distributions of species abundances. However, ecological models with very different assumptions can predict similar species abundance distributions, whereas models with similar assumptions may generate very different predictions. This complicates inferring processes driving community structure from model fits to data. Here, we use an approximation that captures common features of “neutral” biodiversity models—which assume ecological equivalence of species—to test whether neutrality is consistent with patterns of commonness and rarity in the marine biosphere. We do this by analyzing 1,185 species abundance distributions from 14 marine ecosystems ranging from intertidal habitats to abyssal depths, and from the tropics to polar regions. Neutrality performs substantially worse than a classical nonneutral alternative: empirical data consistently show greater heterogeneity of species abundances than expected under neutrality. Poor performance of neutral theory is driven by its consistent inability to capture the dominance of the communities’ most-abundant species. Previous tests showing poor performance of a neutral model for a particular system often have been followed by controversy about whether an alternative formulation of neutral theory could explain the data after all. However, our approach focuses on common features of neutral models, revealing discrepancies with a broad range of empirical abundance distributions. These findings highlight the need for biodiversity theory in which ecological differences among species, such as niche differences and demographic trade-offs, play a central role.

  • The introduction of non-native species to Antarctica in association with human activities is a major threat to indigenous biodiversity and the region's unique ecosystems, as has been well-demonstrated in other ecosystems globally. Existing legislation contained in the Protocol on Environmental Protection to the Antarctic Treaty does not specifically make the eradication of non-native species mandatory, although it is implicit that human-assisted introductions should not take place. Furthermore, to date, eradications of non-native species in the Treaty area have been infrequent and slow to progress. In 2005 an additional Annex (VI) to the Protocol was agreed concerning “Liability arising from environmental emergencies.” This annex focusses on prevention of environmental emergencies, contingency planning and reclaiming costs incurred when responding to an environmental emergency caused by another operator within the Antarctic Treaty area. However, the types of environmental emergencies covered by the annex are not defined. In this paper we highlight potential difficulties with the application of Annex VI in the context of non-native species control and eradication, including, for example, whether a non-native species introduction would be classified as an “environmental emergency” and therefore be considered under the terms of the annex. Even if this were the case, we conclude that the slow pace of approval of the annex by Antarctic Treaty Parties may prevent it coming into force for many years and, once in force, in its current form it is unlikely to be useful for reclaiming costs associated with the eradication or management of a non-native species.

  • Because of its harsh environmental conditions and remoteness, Antarctica is often considered to be at low risk of plant invasion. However, an increasing number of reports have shown the presence and spread of non-native plants in Antarctica; it is therefore important to study which factors control the invasion process in this ecosystem. Here, we assessed the role of different human activities on the presence and abundance of the invasive Poa annua. In addition, we performed a reciprocal transplant experiment in the field, and a manipulative experiment of germination with P. annua and the natives Colobanthus quitensis and Deschampsia antarctica, in order to unravel the effects of physical soil disturbance on the establishment and survival of P. annua. We found a positive correlation between abundance of P. annua and level of soil disturbance, and that survival of P. annua was 33% higher in sites with disturbed soil than non-disturbed. Finally, we found that disturbance conditions increased germination for P. annua, whereas for native species germination in experimentally disturbed soil was either unchanged or reduced compared to undisturbed soil. Our results indicate that human activities that modify abiotic soil characteristics could play an important role in the abundance of this invasive species. If the current patterns of human activities are maintained in Antarctica, the establishment success and spread of P. annua could increase, negatively affecting native flora. Keywords: Alien species; Colobanthus quitensis; Deschampsia antarctica; human disturbance; Poa annua; tourists.

Last update from database: 3/1/25, 3:17 AM (UTC)