Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 8 resources
-
The Troll Atmospheric Station in Antarctica (72°01'S, 2°32'E, 1309 m a.s.l.) was established and put into operation in early 2007. The main foci of the measurement programme are pollution and aerosols in the transition zone between the coastal zone and the inland ice plateau, complementing existing observation programmes along the Antarctic coast and on the Antarctic Plateau. After one year of operation, the monitoring programme is fully operative, and a comprehensive set of data is being analysed. As far as comparable data are available, there is satisfactory agreement between previous and new data. Both aerosol data and measurements of pollution indicate the episodic influence of coastal air masses throughout the year. Background values of medium long-lived pollutants such as CO, O3 and Hg are up to 50% lower than at corresponding Arctic sites (depending on the season), but are still significant. Total ozone and UV doses manifest the recurring Antarctic stratospheric ozone hole, which was moderately severe, but very persistent in 2007. Specific episodes of elevated aerosol concentration and mercury activation are currently under detailed investigation, and will be published separately.
-
Observations of snow properties, superimposed ice, and atmospheric heat fluxes have been performed on first-year and second-year sea ice in the western Weddell Sea, Antarctica. Snow in this region is particular as it does usually survive summer ablation. Measurements were performed during Ice Station Polarstern (ISPOL), a 5-week drift station of the German icebreaker RV Polarstern. Net heat flux to the snowpack was 8 W m−2, causing only 0.1 to 0.2 m of thinning of both snow cover types, thinner first-year and thicker second-year snow. Snow thinning was dominated by compaction and evaporation, whereas melt was of minor importance and occurred only internally at or close to the surface. Characteristic differences between snow on first-year and second-year ice were found in snow thickness, temperature, and stratigraphy. Snow on second-year ice was thicker, colder, denser, and more layered than on first-year ice. Metamorphism and ablation, and thus mass balance, were similar between both regimes, because they depend more on surface heat fluxes and less on underground properties. Ice freeboard was mostly negative, but flooding occurred mainly on first-year ice. Snow and ice interface temperature did not reach the melting point during the observation period. Nevertheless, formation of discontinuous superimposed ice was observed. Color tracer experiments suggest considerable meltwater percolation within the snow, despite below-melting temperatures of lower layers. Strong meridional gradients of snow and sea-ice properties were found in this region. They suggest similar gradients in atmospheric and oceanographic conditions and implicate their importance for melt processes and the location of the summer ice edge.
-
Firn air was sampled on the Antarctic plateau in Dronning Maud Land (DML), during the Norwegian Antarctic Research Expedition (NARE) 2000/2001. In this paper, we describe the analyses for methyl chloride and nonmethane hydrocarbons (NMHCs) in these firn air samples. For the first time, the NMHCs ethane, propane, and acetylene have been measured in Antarctic firn air, and concentration profiles for these gases have been derived. A one-dimensional numerical firn air diffusion model was used to interpret the measured profiles and to derive atmospheric concentrations as a function of time. The atmospheric trends we derived for the NMHC and methyl chloride at DML cover the period from 1975 to 2000. Methyl chloride shows a decreasing trend of 1.2 ± 0.6 ppt per year (annual mean concentration 548 ± 32 ppt). For ethane we found an increasing trend of 1.6 ± 0.6 ppt per year (annual mean concentration 241 ± 12 ppt). The concentrations of propane and acetylene appear to be constant over the period 1975–2000, with annual mean concentrations of 30 ± 4 ppt for propane and 24 ± 2 ppt for acetylene.
-
This paper presents atmospheric concentrations of ethane, propane, acetylene, and methyl chloride, inferred from firn air by using a numerical one-dimensional firn diffusion model. The firn air was collected on the Antarctic plateau in Dronning Maud Land during the Norwegian Antarctic Research Expedition (NARE) 2000/2001. The influences of seasonal variations in temperature and pressure and the variation in accumulation rate were studied and are not negligible, but appear to cancel each other out if all variability is taken into account. This paper also demonstrates that firn air from the uppermost firn layer (30 m) can be used to derive seasonal cycles of these trace gases, without needing a year-round facility. These cycles display higher atmospheric mixing ratios during the Antarctic winter and lower atmospheric mixing ratios in summer. The cycles for the year 2000 show amplitudes of 140 ± 25 ppt for ethane, 30 ± 10 ppt for propane, 24 ± 6 ppt for acetylene, and 40 ± 20 ppt for methyl chloride. For ethane and propane the amplitudes and months of maximum atmospheric concentration (phase) are in reasonable agreement with year-round measurements at the South Pole and Baring Head (New Zealand). The amplitudes for methyl chloride and acetylene are significantly greater than seen in year-round measurements at the South Pole and at Neumayer (Antarctica), although the phase is in line. While biomass burning and removal by OH radicals can partially explain these large amplitudes, the exact cause still remains unclear for methyl chloride and acetylene.
-
Ground-based zenith sky UV–visible measurements of stratospheric bromine monoxide (BrO) slant column densities are compared with simulations from the SLIMCAT three-dimensional chemical transport model. The observations have been obtained from a network of 11 sites, covering high and midlatitudes of both hemispheres. This data set gives for the first time a near-global picture of the distribution of stratospheric BrO from ground-based observations and is used to test our current understanding of stratospheric bromine chemistry. In order to allow a direct comparison between observations and model calculations, a radiative transfer model has been coupled to the chemical model to calculate simulated slant column densities. The model reproduces the observations in general very well. The absolute amount of the BrO slant columns is consistent with a total stratospheric bromine loading of 20 ± 4 ppt for the period 1998–2000, in agreement with previous estimates. The seasonal and latitudinal variations of BrO are well reproduced by the model. In particular, the good agreement between the observed and modeled diurnal variation provides strong evidence that the BrO-related bromine chemistry is correctly modeled. A discrepancy between observed and modeled BrO at high latitudes during events of chlorine activation can be resolved by increasing the rate constant for the reaction BrO + ClO → BrCl + O2 to the upper limit of current recommendations. However, other possible causes of the discrepancy at high latitudes cannot be ruled out.
Explore
Topic
- atmosfæren
- akkumulasjon (1)
- Antarktis (3)
- Dronning Maud Land (4)
- ekspedisjoner (1)
- forurensning (1)
- fysikk (1)
- gasskonsentrasjoner (2)
- geofysikk (5)
- geografi (1)
- glasiologi (1)
- havis (1)
- innlandsis (1)
- is radar (1)
- iskjerner (1)
- kjemiske analyser (1)
- klimatologi (2)
- målinger (3)
- meteorologi (7)
- miljø (1)
- NARE 2000/01 (3)
- økosystemer (1)
- oseanografi (1)
- ozonlaget (1)
- polarområdene (1)
- sjøis (1)
- snø (1)
- snø radar (1)
- Sørishavet (1)
- stratosfæren (1)
- topografi (1)
- Troll forskningsstasjon (1)
- Weddellhavet (1)
Resource type
- Book Section (3)
- Journal Article (5)