Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 30 resources
-
In the Southern Ocean, large-scale phytoplankton blooms occur in open water and the sea-ice zone (SIZ). These blooms have a range of fates including physical advection, downward carbon export, or grazing. Here, we determine the magnitude, timing and spatial trends of the biogeochemical (export) and ecological (foodwebs) fates of phytoplankton, based on seven BGC-Argo floats spanning three years across the SIZ. We calculate loss terms using the production of chlorophyll—based on nitrate depletion—compared with measured chlorophyll. Export losses are estimated using conspicuous chlorophyll pulses at depth. By subtracting export losses, we calculate grazing-mediated losses. Herbivory accounts for ~90% of the annually-averaged losses (169 mg C m−2 d−1), and phytodetritus POC export comprises ~10%. Furthermore, export and grazing losses each exhibit distinctive seasonality captured by all floats spanning 60°S to 69°S. These similar trends reveal widespread patterns in phytoplankton fate throughout the Southern Ocean SIZ.
-
The ocean's ability to take up and store CO2 is a key factor for understanding past and future climate variability. However, qualitative and quantitative understanding of surface-to-interior pathways, and how the ocean circulation affects the CO2 uptake, is limited. Consequently, how changes in ocean circulation may influence carbon uptake and storage and therefore the future climate remains ambiguous. Here we quantify the roles played by ocean circulation and various water masses in the meridional redistribution of carbon. We do so by calculating streamfunctions defined in dissolved inorganic carbon (DIC) and latitude coordinates, using output from a coupled biogeochemical-physical model. By further separating DIC into components originating from the solubility pump and a residual including the biological pump, air-sea disequilibrium, and anthropogenic CO2, we are able to distinguish the dominant pathways of how carbon enters particular water masses. With this new tool, we show that the largest meridional carbon transport occurs in a pole-to-equator transport in the subtropical gyres in the upper ocean. We are able to show that this pole-to-equator DIC transport and the Atlantic meridional overturning circulation (AMOC)-related DIC transport are mainly driven by the solubility pump. By contrast, the DIC transport associated with deep circulation, including that in Antarctic bottom water and Pacific deep water, is mostly driven by the biological pump. As these two pumps, as well as ocean circulation, are widely expected to be impacted by anthropogenic changes, these findings have implications for the future role of the ocean as a climate-buffering carbon reservoir.
-
Studying the biogeography of amphipod crustaceans is of interest because they play an important role at lower trophic levels in ecosystems. Because they lack a planktonic larval stage, it has been hypothesized that marine benthic amphipod crustaceans may have short dispersal distances, high endemicity, and spatial turnover in species composition, and consequently high global species richness. In this study, we examined over 400000 distribution records of 4876 amphipod species, and identified 12 regions of endemicity. The number and percent of endemic species peaked at 30°-35°S and coincided with 3 of these regions of high endemicity: Australia, New Zealand, and southern Africa. Pelagic species of marine amphipod crustaceans were more cosmopolitan than benthic species. The latitudinal patterns of richness (alpha, gamma, and ES50) and species turnover were at least bimodal. Most occurrence records and greater alpha and gamma richness were in mid-latitudes, reflecting sampling bias. Both ES50 and beta diversity had similar richness in the tropics, mid-latitudes, and on the Antarctic shelf around 70°S. These 2 indices exhibited a sharp dip in the deep Southern Ocean at 55°S. ES50 peaked at 30°-35°S and a small dip was apparent near the equator at 5°-10°N. Beta diversity was driven mostly by turnover rather than nestedness. These findings support the need for conservation in each realm of species endemicity and for amphipods, particularly in Antarctica and the coastal mid-latitudes (30°-35°S) of the Southern Hemisphere. KEYWORDS: Endemicity · Latitudinal gradients · Conservation · Species richness · Species turnover
-
We examine the response of the Community Earth System Model Versions 1 and 2 (CESM1 and CESM2) to abrupt quadrupling of atmospheric CO2 concentrations (4xCO2) and to 1% annually increasing CO2 concentrations (1%CO2). Different estimates of equilibrium climate sensitivity (ECS) for CESM1 and CESM2 are presented. All estimates show that the sensitivity of CESM2 has increased by 1.5 K or more over that of CESM1. At the same time the transient climate response (TCR) of CESM1 and CESM2 derived from 1%CO2 experiments has not changed significantly—2.1 K in CESM1 and 2.0 K in CESM2. Increased initial forcing as well as stronger shortwave radiation feedbacks are responsible for the increase in ECS seen in CESM2. A decomposition of regional radiation feedbacks and their contribution to global feedbacks shows that the Southern Ocean plays a key role in the overall behavior of 4xCO2 experiments, accounting for about 50% of the total shortwave feedback in both CESM1 and CESM2. The Southern Ocean is also responsible for around half of the increase in shortwave feedback between CESM1 and CESM2, with a comparable contribution arising over tropical ocean. Experiments using a thermodynamic slab-ocean model (SOM) yield estimates of ECS that are in remarkable agreement with those from fully coupled Earth system model (ESM) experiments for the same level of CO2 increase. Finally, we show that the similarity of TCR in CESM1 and CESM2 masks significant regional differences in warming that occur in the 1%CO2 experiments for each model.
-
The warming climate influences the ocean by changing its wind-driven dynamics and by inputting extra heat. This study analyzes the warming where temperature anomalies penetrate the ocean interior, that is, by focusing on the winter mixed layer base. This allows to distinguish regions where ocean circulation contributes to warm anomalies from locations where density-compensated temperature anomalies locally enter the ocean along isopycnals. Multidecadal (1980–2018) local temperature trends from a hydrographic data set are examined at the winter mixed layer base and partitioned into components relating to isopycnal movement (heave) and change along isopycnals (spice). Subtropical gyres and western boundary currents show warming larger than the global average that mostly projects onto heave. This is the result of the strengthening of the circulation in the Southern Hemisphere subtropical gyres and is related to both wind-driven changes and Southern Ocean warming. Subtropical regions of surface salinity maxima are influenced by warm anomalies along isopycnals.
-
Understanding changes in Antarctic ice shelf basal melting is a major challenge for predicting future sea level. Currently, warm Circumpolar Deep Water surrounding Antarctica has limited access to the Weddell Sea continental shelf; consequently, melt rates at Filchner-Ronne Ice Shelf are low. However, large-scale model projections suggest that changes to the Antarctic Slope Front and the coastal circulation may enhance warm inflows within this century. We use a regional high-resolution ice shelf cavity and ocean circulation model to explore forcing changes that may trigger this regime shift. Our results suggest two necessary conditions for supporting a sustained warm inflow into the Filchner Ice Shelf cavity: (i) an extreme relaxation of the Antarctic Slope Front density gradient and (ii) substantial freshening of the dense shelf water. We also find that the on-shelf transport over the western Weddell Sea shelf is sensitive to the Filchner Trough overflow characteristics.
-
There is a paucity of information on the foraging ecology, especially individual use of sea-ice features and icebergs, over the non-breeding season in many seabird species. Using geolocators and stable isotopes, we defined the movements, distribution and diet of adult Antarctic petrels Thalassoica antarctica from the largest known breeding colony, the inland Svarthamaren, Antarctica. More specifically, we examined how sea-ice concentration and free-drifting icebergs affect the distribution of Antarctic petrels. After breeding, birds moved north to the marginal ice zone (MIZ) in the Weddell sector of the Southern Ocean, following its northward extension during freeze-up in April, and they wintered there in April–August. There, the birds stayed predominantly out of the water (60–80% of the time) suggesting they use icebergs as platforms to stand on and/or to rest. Feather δ15N values encompassed one full trophic level, indicating that birds fed on various proportions of crustaceans and fish/squid, most likely Antarctic krill Euphausia superba and the myctophid fish Electrona antarctica and/or the squid Psychroteuthis glacialis. Birds showed strong affinity for the open waters of the northern boundary of the MIZ, an important iceberg transit area, which offers roosting opportunities and rich prey fields. The strong association of Antarctic petrels with sea-ice cycle and icebergs suggests the species can serve, year-round, as a sentinel of environmental changes for this remote region.
-
Ice shelves around Antarctica can provide back stress for outlet glaciers and control ice sheet mass loss. They often contain narrow bands of thin ice termed ice shelf channels. Ice shelf channel morphology can be interpreted through surface depressions and exhibits junctions and deflections from flowlines. Using ice flow modeling and radar, we investigate ice shelf channels in the Roi Baudouin Ice Shelf. These are aligned obliquely to the prevailing easterly winds. In the shallow radar stratigraphy, syncline and anticline stacks occur beneath the upwind and downwind side, respectively. The structures are horizontally and vertically coherent, except near an ice shelf channel junction where patterns change structurally with depth. Deeper layers truncate near basal incisions. Using ice flow modeling, we show that the stratigraphy is ∼9 times more sensitive to atmospheric variability than to oceanic variability. This is due to the continual adjustment toward flotation. We propose that syncline-anticline pairs in the shallow stratigraphy are caused by preferential snow deposition on the windward side and wind erosion at the downwind side. This drives downwind deflection of ice shelf channels of several meters per year. The depth variable structures indicate formation of an ice shelf channel junction by basal melting. We conclude that many ice shelf channels are seeded at the grounding line. Their morphology farther seaward is shaped on different length scales by ice dynamics, the ocean, and the atmosphere. These processes act on finer (subkilometer) scales than are captured by most ice, atmosphere, and ocean models, yet the dynamics of ice shelf channels may have broader implications for ice shelf stability.
-
Antarctic sea ice can incorporate high levels of iron (Fe) during its formation and has been suggested as an important source of this essential micronutrient to Southern Ocean surface waters during the melt season. Over the last decade, a limited number of studies have quantified the Fe pool in Antarctic sea ice, with a focus on late winter and spring. Here we study the distribution of operationally defined dissolved and particulate Fe from nine sites sampled between Wilkes Land and King George V Land during austral summer 2016/2017. Results point toward a net heterotrophic sea-ice community, consistent with the observed nitrate limitation (<1 μM). We postulate that the recycling of the high particulate Fe pool in summer sea ice supplies sufficient (∼3 nM) levels of dissolved Fe to sustain ice algal growth. The remineralization of particulate Fe is likely favored by high concentrations of exopolysaccharides (113–16,290 μg xeq L−1) which can serve as a hotspot for bacterial activity. Finally, results indicate a potential relationship between glacial meltwater discharged from the Moscow University Ice Shelf and the occurrence of Fe-rich (∼4.3 μM) platelet ice in its vicinity. As climate change is expected to result in enhanced Fe-rich glacial discharge and changes in summer sea-ice extent and quality, the processes influencing Fe distribution in sea ice that persists into summer need to be better constrained.
-
Ice rises and rumples, locally grounded features adjacent to ice shelves, are relatively small yet play significant roles in Antarctic ice dynamics. Their roles generally depend upon their location within the ice shelf and the stage of the ice-sheet retreat or advance. Large, long-stable ice rises can be excellent sites for deep ice coring and paleoclimate study of the Antarctic coast and the Southern Ocean, while small ice rises tend to respond more promptly and can be used to reveal recent changes in regional mass balance. The coasts of Dronning Maud Land (DML) and Enderby Land in East Antarctica are abundant with these features. Here we review existing knowledge, presenting an up-to-date status of research in these regions with focus on ice rises and rumples. We use regional datasets (satellite imagery, surface mass balance and ice thickness) to analyze the extent and surface morphology of ice shelves and characteristic timescales of ice rises. We find that large parts of DML have been changing over the past several millennia. Based on our findings, we highlight ice rises suitable for drilling ice cores for paleoclimate studies as well as ice rises suitable for deciphering ice dynamics and evolution in the region.
-
Mixing by mesoscale eddies profoundly impacts climate and ecosystems by redistributing and storing dissolved tracers such as heat and carbon. Eddy mixing is parameterized in most numerical models of the ocean and climate. To reduce known sensitivity to such parameterizations, observational estimates of mixing are needed. However, logistical and technological limitations obstruct our ability to measure global time-varying mixing rates. Here, we extend mixing length theory with mean-flow suppression theory, and first surface modes, to estimate mixing from readily available observational-based climatological data, of salinity, temperature, pressure, and eddy kinetic energy at the sea surface. The resulting full-depth global maps of eddy mixing can reproduce the few available direct estimates and confirm the importance of mean-flow suppression of mixing. The results also emphasize the significant effect of eddy surface intensification and its relation to the vertical density stratification. These new insights in mixing dynamics will improve future mesoscale eddy mixing parameterizations.
-
In cold polar waters, temperatures sometimes drop below the freezing point, a process referred to as supercooling. However, observational challenges in polar regions limit our understanding of the spatial and temporal extent of this phenomenon. We here provide observational evidence that supercooled waters are much more widespread in the seasonally ice-covered Southern Ocean than previously reported. In 5.8% of all analyzed hydrographic profiles south of 55°S, we find temperatures below the surface freezing point (“potential” supercooling), and half of these have temperatures below the local freezing point (“in situ” supercooling). Their occurrence doubles when neglecting measurement uncertainties. We attribute deep coastal-ocean supercooling to melting of Antarctic ice shelves and surface-induced supercooling in the seasonal sea-ice region to wintertime sea-ice formation. The latter supercooling type can extend down to the permanent pycnocline due to convective sinking plumes—an important mechanism for vertical tracer transport and water-mass structure in the polar ocean.
-
To investigate the role of tides in Weddell Sea ocean-ice shelf melt interactions, and resulting consequences for ocean properties and sea ice interactions, we develop a regional ocean-sea ice model configuration, with time-varying ocean boundary and atmospheric forcing, including the deep open ocean (at 2.5–4 km horizontal resolution), the southwestern continental shelf (≈2.5 km), and the adjacent cavities of eastern Weddell, Larsen, and Filchner-Ronne ice shelves (FRIS, 1.5–2.5 km). Simulated circulation, water mass, and ice shelf melt properties compare overall well with available open ocean and cavity observational knowledge. Tides are shown to enhance the kinetic energy of the time-varying flow in contact with the ice shelves, thereby increasing melt. This dynamically driven impact of tides on net melting is to almost 90% compensated by cooling through the meltwater that is produced but not quickly exported from regions of melting in the Weddell Sea cold-cavity regime. The resulting systematic tide-driven enhancement of both produced meltwater and its refreezing on ascending branches of, especially the FRIS, cavity circulation acts to increase net ice shelf melting (by 50% in respect to the state without tides, ≈50 Gt yr−1). In addition, tides also increase the melt-induced FRIS cavity circulation, and the meltwater export by the FRIS outflow. Simulations suggest attendant changes on the open-ocean southwestern continental shelf, characterized by overall freshening and small year-round sea ice thickening, as well as in the deep southwestern Weddell Sea in the form of a marked freshening of newly formed bottom waters.
-
Southern Ocean ecosystems are under pressure from resource exploitation and climate change1,2. Mitigation requires the identification and protection of Areas of Ecological Significance (AESs), which have so far not been determined at the ocean-basin scale. Here, using assemblage-level tracking of marine predators, we identify AESs for this globally important region and assess current threats and protection levels. Integration of more than 4,000 tracks from 17 bird and mammal species reveals AESs around sub-Antarctic islands in the Atlantic and Indian Oceans and over the Antarctic continental shelf. Fishing pressure is disproportionately concentrated inside AESs, and climate change over the next century is predicted to impose pressure on these areas, particularly around the Antarctic continent. At present, 7.1% of the ocean south of 40°S is under formal protection, including 29% of the total AESs. The establishment and regular revision of networks of protection that encompass AESs are needed to provide long-term mitigation of growing pressures on Southern Ocean ecosystems.
-
Direct measurements of spatially distributed vertical strain within ice masses are scientifically valuable but challenging to acquire. We use manual marker tracking and automatic cross correlation between two repeat optical televiewer (OPTV) images of an ~100 m-long borehole at Derwael Ice Rise (DIR), Antarctica, to reconstruct discretised, vertical strain rate and velocity at millimetre resolution. The resulting profiles decay with depth, from −0.07 a−1 at the surface to ~−0.002 a−1 towards the base in strain and from −1.3 m a−1 at the surface to ~−0.5 m a−1 towards the base in velocity. Both profiles also show substantial local variability. Three coffee-can markers installed at different depths into adjacent boreholes record consistent strain rates and velocities, although averaged over longer depth ranges and subject to greater uncertainty. Measured strain-rate profiles generally compare closely with output from a 2-D ice-flow model, while the former additionally reveal substantial high-resolution variability. We conclude that repeat OPTV borehole logging represents an effective means of measuring distributed vertical strain at millimetre scale, revealing high-resolution variability along the uppermost ~100 m of DIR, Antarctica.
-
The Weddell Sea is of global importance in the formation of dense bottom waters associated with sea ice formation and ocean-ice sheet interaction occurring on the shelf areas. In this context, the Weddell Sea boundary current system (BCS) presents a major conduit for transporting relatively warm water to the Weddell Sea ice shelves and for exporting some modified form of Wedell Sea deep and bottom waters into the open ocean. This study investigates the downstream evolution of the structure and the seasonality of the BCS along the Weddell Sea continental slope, combining ocean data collected for the past two decades at three study locations. The interannual-mean geostrophic flow, which follows planetary potential vorticity contours, shifts from being surface intensified to bottom intensified along stream. The shift occurs due to the densification of water masses and the decreasing surface stress that occurs westward, toward the Antarctic Peninsula. A coherent along-slope seasonal acceleration of the barotropic flow exists, with maximum speed in austral autumn and minimum speed in austral summer. The barotropic flow significantly contributes to the seasonal variability in bottom velocity along the tip of the Antarctic Peninsula. Our analysis suggests that the winds on the eastern/northeastern side of the gyre determines the seasonal acceleration of the barotropic flow. In turn, they might control the export of Weddell Sea Bottom Water on seasonal time scales. The processes controlling the baroclinic seasonality of the flow need further investigation.
-
Polynyas are subject to variability in winds and ocean circulation and are important sites of ecological productivity. In February 2010, the B09B iceberg collided with the Mertz Glacier Tongue (MGT), calving a 78 × 40-km giant iceberg which modified the icescape and primary productivity of the Mertz polynya. In this study, we use satellite ocean color and sea ice concentration to investigate the variability, trends, and drivers of phytoplankton blooms in the Mertz polynya since 1997. During the bloom, over 21 years, we found (i) a later ice retreat time, (ii) an increase in sea ice concentration, (iii) a decrease in open-water period, (iv) a later bloom start, and (v) a decrease in bloom duration. Our results suggest that major postcalving changes in the physical characteristics of the polynya, mainly its icescape, are the primary drivers of phytoplankton phenology. More specifically, the MGT calving event resulted in significant seasonal and regional changes, with higher eastern chl-a and mean summer chl-a postcalving. While satellite data are useful to study long-term variability in these inhospitable areas, they only focus on the ocean surface and are obscured by ice and clouds. Additional subsurface parameters from seal tags, gliders and moorings in the southernmost polar regions would strengthen our comprehension of phytoplankton and physical changes in ocean dynamics that may have far-reaching consequences, from global circulation to carbon export.
Explore
Topic
- Sørishavet
- alger (1)
- Antarktis (2)
- arkebakterier (1)
- atmosfæren (1)
- batymetri (4)
- biodiversitet (1)
- biofilm (1)
- biogeografi (1)
- biogeokjemi (1)
- biologi (2)
- biomarkører (1)
- biomasse (1)
- Bouvetøya (1)
- brehylle (3)
- bunnvann (1)
- crustacea (1)
- Dronning Maud Land (2)
- ekspedisjoner (1)
- epidemiologi (1)
- fiskeri (1)
- fôring (1)
- forskning (1)
- fylogenetikk (1)
- fysikk (1)
- fytoplankton (2)
- geofysikk (4)
- geokjemi (1)
- geologi (1)
- geolokalisering (1)
- geovitenskap (2)
- glasiologi (4)
- havet (2)
- havis (7)
- havnivåstigning (1)
- havsirkulasjon (1)
- havstrømmer (2)
- hvaler (1)
- hydrografi (1)
- infeksjon (1)
- innlandsis (3)
- isberg (1)
- isbre (1)
- isbrem (5)
- isfjell (1)
- isshelf (6)
- kalving (1)
- karbon syklus (2)
- karbondioksid (3)
- klimaendringer (9)
- klimagasser (1)
- klimamodeller (2)
- klimatologi (5)
- kontinentalmargin (1)
- kontinentalsokkel (1)
- krepsdyr (1)
- krill (1)
- landfast havis (1)
- landfast sjøis (1)
- langmuirsirkulasjon (1)
- litosfæren (1)
- marin biologi (8)
- marin zoologi (1)
- marinbiologi (1)
- marine økosystemer (4)
- menneskelig påvirkning (1)
- meteorologi (1)
- miljøendringer (2)
- miljøpåvirkning (1)
- miljøvern (1)
- næring (1)
- observasjoner (1)
- økologi (3)
- økosystem (1)
- økosystemer (2)
- oppvarming (1)
- ornitologi (2)
- oseanografi (12)
- overvåking (1)
- pelsseler (1)
- petreller (2)
- pinnipedier (1)
- plankton (1)
- polarområdene (2)
- polynja (1)
- serologi (1)
- sjøelefanter (1)
- sjøfugler (2)
- sjøis (7)
- sjøvann (1)
- skyer (1)
- smelting (2)
- superkjøling (1)
- tektonikk (1)
- temperatur (1)
- tidevann (1)
- vannmasser (1)
- vannvirvler (1)
- virologi (1)
- Weddellhavet (6)
- zoogeografi (1)
- zoologi (2)
Resource type
- Book Section (1)
- Journal Article (29)