Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 171 resources
-
Continuous moored time series of temperature, salinity, pressure and current speed and direction are of great importance for understanding the continental shelf and under-ice-shelf dynamics and thermodynamics that govern water mass transformations and ice melting in and around Antarctic marginal seas. In these regions, icebergs and sea ice make ship-based mooring deployment and recovery challenging. Nevertheless, over decades, expeditions around the fringe of Antarctica sporadically deployed and recovered hundreds of moored instruments, including those facilitated through ice shelves boreholes. These datasets tend to be archived in a wide range of data centres, with, to our knowledge, no clear format standardisation. As a result, systematic analysis of historical mooring time series in the marginal seas is often challenging. Here we present the first version of a standardised pan-Antarctic moored hydrography and current time series compilation, with broad international contributions from data centres, research institutes and individual data owners. The mooring records in this compilation span over five decades, from the 1970s to the 2020s, providing an opportunity for a systematic study of the pan-Antarctic water mass transport and shelf connectivity. As a demonstration of the utility of this compilation, we present spectral analysis of the compiled current velocity time series, which unsurprisingly shows the dominating presence of tidal variability within most records. This component of the variability is fitted using multi-linear regression to tidal frequencies, and the tidal fit is removed from the original time series to leave de-tided variability. Given the limited record durations to months to years, de-tided variability is dominated by synoptic (3–10 d period), intraseasonal (10–80 d) and seasonal (∼6 months–1 year) signals. The spatial distribution of the kinetic energy integrated within frequency bands is presented and discussed within respective regional contexts, and future avenues of research are proposed. This data compilation is assembled under the endorsement of Ocean-Cryosphere Exchanges in ANtarctica: Impacts on Climate and the Earth System (OCEAN ICE) project (https://ocean-ice.eu/, last access: 23 October 2025) funded by the European Commission and UK Research and Innovation. It is available and regularly updated in NetCDF format with the SEANOE database at https://doi.org/10.17882/99922 (Zhou et al., 2024a).
-
Two tri-unsaturated and isomeric (E/Z) highly branched isoprenoid (HBI) diatom lipid biomarkers were quantified in 228 water column samples collected from the English Channel, West Svalbard (Arctic), the Scotia Sea (Southern Ocean) and East Antarctica. We found that the relative amounts of the two HBIs correlate well with water temperatures taken at the time of sampling. Based on these findings and some other HBI data reported previously, we suggest that the proportion of the HBI E-isomer (termed EZ25) may serve as a new proxy for palaeo sea surface temperatures, including in the polar regions. Next steps will involve determination of EZ25 in surface and downcore sediments to ascertain whether the temperature response described herein translates well to the geological record.
-
Understanding long-term climate variability in the high latitudes of the Southern Hemisphere is critical due to the key role of the Southern Ocean in the global climate system. However, sparse observations (in space and time) coupled with strong internal variability limit our ability to interpret the origin of recent changes, and their longer-term context. Here we present a dynamically consistent reconstruction of the Antarctic atmosphere and Southern Ocean from 1700 to 2023. We first use data assimilation (DA)-based Antarctic atmospheric reanalyses that combine instrumental observations (1958–2023) and paleoclimate proxies (1700–2000) with Earth System Models to reconstruct key surface climate fields. We then drive a global ocean–sea-ice model with this atmospheric reanalysis to simulate historical ocean conditions, including temperature, salinity, currents, and sea-ice-related variables at 1° resolution. This reconstruction provides the first long-term physically consistent dataset of Antarctic atmosphere–ocean variability, suitable for studying low-frequency climate variability, evaluating climate models, and potentially driving regional atmospheric and ocean models as well as ice sheet models.
-
ABSTRACT Understanding diet composition is essential for unravelling trophic interactions in aquatic ecosystems. DNA metabarcoding, utilising various variable regions of the 18S rRNA gene, is increasingly employed to investigate zooplankton diet composition. However, accurate results depend on rapid inactivation of digestive enzymes and DNA nucleases through proper sample processing and preservation. In this study, we compare the prey communities of Antarctic krill retrieved from the 18S variable regions V4 and V7 and assess how different processing treatments affect the detected prey composition of both krill and salps. Our findings highlight the critical importance of prompt sample processing for species with highly efficient digestive enzymes, such as krill, to preserve rapidly digested prey, including gelatinous plankton. Comparative analyses of the V4 and V7 regions revealed significantly different prey communities within the same krill samples, indicating that these regions may not be suitable for direct comparisons within or across studies. To complement molecular approaches, we also analyse fatty acids (FA) as trophic markers which provide insights into dietary habits over both short and long time scales. By comparing FA signals from stomach and tissue samples of the same krill and salp individuals, we identified significant differences in trophic markers representing different plankton groups. These findings emphasise the necessity of separating digestive tract from tissue to distinguish between short- and long-term diet signals. Furthermore, integrating FA analysis with metabarcoding offers valuable insights into zooplankton digestion efficiency across taxonomic levels. This combined approach enhances our understanding of zooplankton feeding ecology and trophic interactions in marine ecosystems.
-
The global overturning circulation (GOC) is the largest scale component of the ocean circulation, associated with a global redistribution of key tracers such as heat and carbon. The GOC generates decadal to millennial climate variability, and will determine much of the long-term response to anthropogenic climate perturbations. This review aims at providing an overview of the main controls of the GOC. By controls, we mean processes affecting the overturning structure and variability. We distinguish three main controls: mechanical mixing, convection, and wind pumping. Geography provides an additional control on geological timescales. An important emphasis of this review is to present how the different controls interact with each other to produce an overturning flow, making this review relevant to the study of past, present and future climates as well as to exoplanets’ oceans.
-
This study examines the interplay between water column structure, tidal currents, and basal melting at a site beneath Ronne Ice Shelf, using a 3-year data set of oceanographic measurements, and a collocated year-long time series of radar-derived melt rate estimates. Currents at the site are characterized by mixed semidiurnal tides with strong spring-neap variability, superimposed on a nontidal flow. The product of current speed and thermal driving, both measured approximately 19 m from the ice base, explains 88% of the melt rate variability. Although current speed is the dominant driver of this variability, thermal driving also contributes non-negligibly on spring-neap and longer timescales. The semidiurnal tidal ellipses feature marked vertical variations, transitioning from nearly rectilinear in the mid-water column to more circular and clockwise (CW)-rotating near the ice. This depth-dependence of the semidiurnal tide is attributed to the differential influence of boundary friction on the CW and anticlockwise (ACW) rotary components near the critical latitude (where the tidal frequency equals the Coriolis frequency). A theoretical model, which assumes depth-independent eddy viscosity, successfully reproduces the observed 3-year mean vertical structure of the tidal ellipses. Considering the total tidal current rather than individual constituents, ice base friction damps both the time-mean flow speed and the tidal fluctuations, with attenuation varying over the spring-neap cycle, peaking during spring tides. The observed latitude- and time-dependent effects of ice base friction on the barotropic tide are not captured in parameterizations that estimate tide-induced friction velocity by scaling the time-averaged barotropic tidal speed with a constant drag coefficient.
-
Understanding how marine predators structure and adjust their foraging in response to prey field characteristics is a longstanding objective in marine ecology. This is particularly challenging in Southern Ocean ecosystems, where logistical and financial constraints hinder assessment of predator foraging and prey field information at relevant spatial and temporal scales. Here, we examine how Adélie penguins, Pygoscelis adeliae, a key Southern Ocean indicator species, perform and organize their foraging behaviour during two contrasting years of krill (Euphausia superba) abundance. Using multiyear krill acoustic data from King George Island in the West Antarctic Peninsula (WAP), we assess broad seasonal conditions in krill availability. We also analyse a suite of penguin biologging data (spatial location, dive and accelerometry-derived activities) during the same period to identify broad behavioural differences in their bout-diving activity, a classical measure of the temporal organization of foraging in diving predators. During years of high krill abundance and availability, penguins performed shorter dive bouts (consisting of shallower and shorter-duration dives), which were more concentrated in time and space. Despite these differences in bout structure, prey capture attempts occurred at the same rate within bouts. These findings challenge traditional interpretations assuming that increased bout durations (and related proxies of prey capture effort) signal increased krill patch abundance and profitability. Although additional data are required to understand the full scope of penguin bout diving and krill prey field associations, our work improves understanding of penguin behavioural variation and provides insights into how foraging behaviours could potentially be used to interpret krill availability at predator- and management-relevant scales.
-
Enhanced Antarctic ice sheet mass loss yields ocean surface freshening, cooling and sea ice expansion, which result in changes in the atmospheric conditions. Using the Southern Ocean Freshwater Input from Antarctica (SOFIA) multi-model ensemble, we study the atmospheric response to a 100-year idealized freshwater release of 0.1 Sv. All models simulate a surface-intensified tropospheric cooling and lower-stratospheric warming south of 35°S. Tropospheric cooling is attributed to sea ice expansion and the associated albedo enhancement in winter and a colder sea surface in summer. This cooling yields a downward displacement of the tropopause, reduced stratospheric water vapor content and ultimately warming around 200 hPa. An enhanced southward eddy heat flux explains warming at 10?100 hPa during austral winter. Despite a temporally (and spatially) uniform prescribed freshwater flux, a prominent sea ice seasonal cycle and atmosphere dynamics result in a distinct seasonal pattern in the occurrence and magnitude of the temperature responses.
-
In recent years, the Antarctic sea ice has experienced major changes, which are neither well understood nor adequately reproduced by Earth system models. To support model development with an aim to improve Antarctic sea ice and upper-ocean predictions, the impacts of updating the sea ice model and the atmospheric forcing are investigated. In the new MetROMS-UHel-v1.0 (henceforth MetROMS-UHel) ocean–sea ice model, the sea ice component has been updated from CICE5 to CICE6, and the forcing has been updated from ERA-Interim (ERAI) to ERA5 reanalyses. The two versions of MetROMS evaluated in this study use a version of the regional ROMS ocean model including ice shelf cavities. We find that the update of CICE (Community Ice CodE) and ERA reduced the negative bias of the sea ice area in summer. However, the sea ice volume decreases after the CICE update but increases when the atmospheric forcing is updated. As a net result after both updates, the modelled sea ice becomes thinner and more deformed, particularly near the coast. The ROMS ocean model usually yielded a deeper ocean mixed layer compared to observations. Using ERA5, the situation was slightly improved. The update from CICE5 to CICE6 resulted in a fresher coastal ocean due to a smaller salt flux from sea ice to the ocean. In the ice shelf cavities, the modelled melt rates are generally underestimated compared with observations, with the largest underestimation coming from the ice shelves in the too cold Amundsen and Bellingshausen seas as well as from the Australian sector in East Antarctica. These identified sea ice and oceanic changes vary seasonally and regionally. By determining sea ice and oceanic changes after the model and forcing updates and evaluating them against observations, this study informs modellers on improvements and aspects requiring attention with potential model adjustments.
-
Euphausia superba is a well-known Antarctic crustacean of great economic and ecological importance, whose management requires accurate and precise abundance and distribution estimates. Such estimates are difficult to achieve given the remoteness, extension, and large spatio-temporal variability of its geographic distribution. Acoustic data collected on board krill fishing vessels during normal fishing operation has a great potential to enhance such abundance and distribution estimates. In the present work we test the hypothesis that design-free hydroacoustic data collected during regular fishing operations can be used to produce abundance and distribution estimates with similar accuracy and precision than design-based scientific surveys. Thus, we produced and compared distribution and abundance estimates produced using either design-free hydroacoustic data collected during regular fishing operations or design-based data from scientific surveys conducted off the South Orkney Islands during summer 2017 and 2019. Following a Bayesian geostatistical approach that considered and fitted simultaneously the spatial and temporal correlation of the data, we tested different auto-correlation structures and selected the most informative models. The comparison included the means and coefficients of variation (CV) of the probability of presence (p), conditional density (d) and relative abundance index (RAI) estimates. In addition, we also simulated scenarios of parallel and orthogonal transects and obtained RAI estimates from each scenario to compare with design-based and design-free estimates for each year. In 2017, the mean RAI estimated using design-free data (94 421 m2; CV: 14 %) was ∼ 50 % higher than the one estimated with design-based data (60 232 m2; CV: 42 %), both within the fishing area. In 2019, the mean RAI estimated using design-free data (509 413 m2 CV: 6 %) was ∼ 5-fold higher than the one obtained using design-based data (113 654 m2; CV: 33 %) in the same area. Design-free RAI estimates were highly sensitive to extrapolating the inference area from fishing to the high-density sub-area. On the other hand, changing from an hourly-resolved spatio-temporal model to a purely spatial model resulted in neglectable changes. Despite observed differences in mean estimates, both methods identified similar areas of high presence and density of Antarctic krill north and north-west of the South Orkney Islands. The 2017 estimate from design-free data was probably affected by a larger dispersion of krill, and a less observed effective area during regular fishing operations. Our results show that despite using state-of-the-art methods for processing and analyzing design-free, acoustic data collected by the fishing fleet, it still yielded unreliable RAI estimates. The bias and uncertainty related to design-free data were reduced when parallel or orthogonal transects were applied although orthogonal transects yielded results with increased accuracy as they were only 21 % lower and 0.02 % higher than the true value in 2017 and 2019, respectively. Other possible approach to minimize bias would be integrating hydroacoustic information from multiple vessels.
-
This paper explores the research, making, and performance of Sastrugi: Sounds of Antarctic Sea Ice. Combining the techniques of sonification, field recording, and musique concrète, Sastrugi orchestrates multisensory world building where immersive soundscapes, data-driven violin composition, and expansive visuals narrate the poignant tale of vanishing sea ice in the Antarctic and Southern Ocean. In the face of a record-breaking year for Antarctic sea ice in 2023, this project emerged as a vital testament to the Earth’s changing climate and highlights the power of creative approaches for engaging audiences with science and vast amounts of data.
-
Abstract Antarctic sea ice is one of the largest biomes on Earth providing a critical habitat for ice algae. Measurements of primary production in Antarctic sea ice remain scarce and an observation-based estimate of primary production has not been revisited in over 30 years. We fill this knowledge gap by presenting a newly compiled circumpolar data set of particulate and dissolved organic carbon from 362 ice cores, sampled between 1989 and 2019, to estimate sea-ice net community production using a carbon biomass accumulation approach. Our estimate of 26.8?32.9 Tg C yr?1 accounts for at least 15%?18% of the total primary production in the Antarctic sea-ice zone, less than a previous observation-based estimate (63?70 Tg C yr?1) and consistent with recent modeled estimates. The results underpin the ecological significance of sea-ice algae as an early season resource for pelagic food webs.
-
The management strategy for the Antarctic krill (Euphausia superba) fishery is being revised. A key aim is to spatially and temporally allocate catches in a manner that minimizes impacts to both the krill stock and dependent predators. This process requires spatial information on the distribution and abundance of krill, yet gaps exist for an important fishing area surrounding the South Orkney Islands in the south Scotia Sea. To fill this need, we create a dynamic distribution model for krill in this region. We used data from a spatially and temporally consistent acoustic survey (2011-2020) and year-specific environmental covariates within a two-part hurdle model. The model successfully captured observed spatial and temporal patterns in krill density. The covariates found to be most important included distance from shelf break, distance from summer sea ice extent, and salinity. The northern and eastern shelf edges of the South Orkney Islands were areas of consistently high krill density and displayed strong spatial overlap between intense fishing activity and foraging chinstrap penguins. High mean krill density was also linked to oceanographic features located within the Weddell Sea. Our data suggest that years in which these features were closer to the South Orkney shelf were also years of positive Southern Annular Mode and higher observed krill densities. Our findings highlight existing fishery?predator?prey overlap in the region and support the hypothesis that Weddell Sea oceanography may play a role in transporting krill into this region. These results will feed into the next phase of krill fisheries management assessment.
-
Over the last decade, the Southern Ocean has experienced episodes of severe sea ice area decline. Abrupt events of sea ice loss are challenging to predict, in part due to incomplete understanding of processes occurring at the scale of individual ice floes. Here, we use high-resolution altimetry (ICESat-2) to quantify the seasonal life cycle of floes in the perennial sea ice pack of the Weddell Sea. The evolution of the floe chord distribution (FCD) shows an increase in the proportion of smaller floes between November and February, which coincides with the asymmetric melt–freeze cycle of the pack. The freeboard ice thickness distribution (fITD) suggests mirrored seasonality between the western and southern sections of the Weddell Sea ice cover, with an increasing proportion of thicker floes between October and March in the south and the opposite in the west. Throughout the seasonal cycle, there is a positive correlation between the mean chord length of floes and their average freeboard thickness. Composited floe profiles reveal that smaller floes are more vertically round than larger floes and that the mean roundness of floes increases during the melt season. These results show that regional differences in ice concentration and type at larger scales occur in conjunction with different behaviors at the small scale. We therefore suggest that floe-derived metrics obtained from altimetry could provide useful diagnostics for floe-aware models and improve our understanding of sea ice processes across scales.
-
Antarctic sea ice has changed significantly over the past four decades; yet limited understanding of fundamental processes, including its seasonal cycle, hinders our ability to interpret these changes. Here, we examine the processes determining the moment when sea ice locally disappears each spring, defined as the retreat date, using satellite observations over 1994?2020. We find that climatological retreat date is driven by sea ice melt in most of the seasonal ice zone and strongly constrained by the seasonal maximum ice thickness. Ice removal due to drifting ice export predominantly drives retreat only in coastal polynyas. At interannual timescales, retreat date anomalies are also preconditioned by prior maximum ice thickness, which affects melt-driven spring ice loss through the ice-albedo feedback, though this effect appears limited to specific regions. Winds emerge as a primary driver of interannual variability in the retreat date, influencing both drift- and melt-related spring ice removal processes.
-
Snowfall is an important component of the mass balance of ice sheets and glaciers in Antarctica. In coastal Victoria Land (VL), changes to snowfall can impact ice masses, landscapes, and coastal ecosystems. Coastal VL is characterized by strong gradients in snowfall rates between the polar desert of the McMurdo Dry Valleys and the high accumulation in northern VL. Extreme precipitation events significantly contribute to total precipitation, with the largest contribution in the Terra Nova Bay area. We present a comprehensive analysis of snowfall dynamics in this region, using a Lagrangian moisture source diagnostic to study moisture sources and Self-Organizing Maps (SOM) to link these to different synoptic weather types. The moisture for snowfall in VL originates from the Southern Ocean, with more local sources in the Ross Sea embayment in summer when sea ice is reduced. We show a strong division in moisture sources between northern and southern VL, with the north receiving precipitation from moisture sources to the west and southern VL from the east. Precipitation in northern VL results from meridional transport of marine air from lower latitudes, while precipitation in southern VL is related to cyclonic disturbances in the Ross Sea that bring moisture from the east. Extreme precipitation in northern VL occurs during blocking highs that intensify meridional transport. Such intrusions of marine air, sometimes in the form of atmospheric rivers, do not impact the more isolated western Ross Ice Shelf and southern VL further in the Ross Sea embayment.
-
Understanding the connection between maturity stages and morphology in relation to size selectivity in trawls is essential for assessing the impact of various fishing gear on the population structures of harvested species, their fishing mortality rates, and the efficiency of the gear used. The Antarctic krill (Euphausia superba) fishery is the largest in the Southern Ocean by volume, and there is increasing interest in expanding the industry. The krill fishery employs different trawl designs and is not currently subject to technical regulations specifying the types of fishing gear and mesh sizes that can legally be used. There is a need to establish a robust model predicting size selectivity that includes the morphological variation in the population of krill. Male and female Antarctic krill are described with 12 maturity stages, from juveniles to sexually mature adults, each with distinct morphological features. The current study established a morphological description of each individual krill maturity stage to identify and parameterize what determines size selectivity using the FISHSELECT framework. This framework is used to predict size selectivity for each of the different stages in various mesh sizes and openings relevant to the krill fishery, in both actual and virtual populations. The results can be used to assess size selectivity for specific fishing gears and population structures, facilitating more accurate understanding and modeling of the fishery’s impact on the demographic composition of the krill stock.
-
The Southern Ocean (south of 30°S) contributes significantly to global ocean carbon uptake through the solubility, physical and biological pumps. Many studies have estimated carbon export to the deep ocean, but very few have attempted a basin-scale perspective, or accounted for the sea-ice zone (SIZ). In this study, we use an extensive array of BGC-Argo floats to improve previous estimates of carbon export across basins and frontal zones, specifically including the SIZ. Using a new method involving changes in particulate organic carbon and dissolved oxygen along the mesopelagic layer, we find that the total Southern Ocean carbon export from 2014 to 2022 is 2.69 ± 1.23 PgC y?1. The polar Antarctic zone contributes the most (41%) with 1.09 ± 0.46 PgC y?1. Conversely, the SIZ contributes the least (8%) with 0.21 ± 0.09 PgC y?1 and displays a strong shallow respiration in the upper 200 m. However, the SIZ contribution can increase up to 14% depending on the depth range investigated. We also consider vertical turbulent fluxes, which can be neglected at depth but are important near the surface. Our work provides a complementary approach to previous studies and is relevant for work that focuses on evaluating the biogeochemical impacts of changes in Antarctic sea-ice extent. Refining estimates of carbon export and understanding its drivers ultimately impacts our comprehension of climate variability at the global ocean scale.
-
Ice-sheet mass loss is one of the clearest manifestations of climate change, with Antarctica discharging mass into the ocean via melting or through calving. The latter produces icebergs that can modify ocean water properties, often at great distances from source. This affects upper-ocean physics and primary productivity, with implications for atmospheric carbon drawdown. A detailed understanding of iceberg modification of ocean waters has hitherto been hindered by a lack of proximal measurements. Here unique measurements of a giant iceberg from an underwater glider enable quantification of meltwater effects on the physical and biological processes in the upper layers of the Southern Ocean, a region disproportionately important for global heat and carbon sequestration. Iceberg basal melting erodes seasonally produced winter water layer stratification, normally forming a strong potential energy barrier to vertical exchange of surface and deep waters, while freshwater run-off increases and shoals near-surface stratification. Nutrient-rich deeper waters, incorporating meltwater loaded with terrigenous material, are ventilated to below this stratification maxima, providing a potential mechanism for alleviating critical phytoplankton-limiting components. Regional historical hydrographic data demonstrate similar stratification changes during the passage of another large iceberg, suggesting that they may be an important pathway of aseasonal winter water modification.
-
Aim To identify the broad-scale oceanic migration routes (?marine flyways?) used by multiple pelagic, long-distance migratory seabirds based on a global compilation of tracking data. Location Global. Time Period 1989?2023. Major Taxa Studied Seabirds (Families: Phaethontidae, Hydrobatidae, Diomedeidae, Procellariidae, Laridae and Stercorariidae). Methods We collated a comprehensive global tracking dataset that included the migratory routes of 48 pelagic and long-distance migrating seabird species across the Atlantic, Indian, Pacific and Southern Oceans. We grouped individuals that followed similar routes, independent of species or timings of migration, using a dynamic time warping clustering approach. We visualised the routes of each cluster using a line density analysis and used knowledge of seabird spatial ecology to combine the clusters to identify the broad-scale flyways followed by most pelagic migratory seabirds tracked to-date at an ocean-basin scale. Results Six marine flyways were identified across the world's oceans: the Atlantic Ocean Flyway, North Indian Ocean Flyway, East Indian Ocean Flyway, West Pacific Ocean Flyway, Pacific Ocean Flyway and Southern Ocean Flyway. Generally, the flyways were used bidirectionally, and individuals either followed sections of a flyway, a complete flyway, or their movements linked two or more flyways. Transhemispheric figure-of-eight routes in the Atlantic and Pacific oceans, and a circumnavigation flyway in the Southern Ocean correspond with major wind-driven ocean currents. Main Conclusions The marine flyways identified demonstrate that pelagic seabirds have similar and repeatable migration routes across ocean-basin scales. Our study highlights the need to account for connectivity in seabird conservation and provides a framework for international cooperation.
Explore
Topic
- Sørishavet
- AABW (1)
- akvakultur (1)
- alger (4)
- Amundsenhavet (2)
- Antarktis (20)
- Antarktistraktaten (2)
- arkebakterier (1)
- atmosfæren (4)
- batymetri (6)
- Bellingshausenhavet (1)
- biodiversitet (7)
- biofilm (1)
- biofysikk (1)
- biogeografi (2)
- biogeokjemi (10)
- biokjemi (1)
- biologging (3)
- biologi (4)
- biomarkører (2)
- biomasse (2)
- bioovervåking (1)
- Bouvetøya (1)
- brehylle (4)
- bunnvann (1)
- chronostratigrafi (1)
- crustacea (1)
- dataanalyse (2)
- database (3)
- datainnsamling (1)
- Deceptionøya (1)
- deglasiasjon (1)
- diatomeer (1)
- Dronning Maud Land (5)
- dyreplankton (1)
- ekkolodd (5)
- ekspedisjoner (2)
- Endurance (skip) (1)
- epidemiologi (1)
- evolusjon (1)
- fauna (1)
- fisker (4)
- fiskeri (3)
- fiskerier (9)
- fiskeriforvaltning (3)
- fjernmåling (2)
- flora (1)
- fôring (2)
- forskning (3)
- forskningsinfrastruktur (1)
- forurensning (4)
- forvaltning (3)
- fotografi (1)
- fotogrammetri (1)
- fotosyntese (2)
- fototaxis (1)
- fylogenetikk (2)
- fysikk (3)
- fytoplankton (9)
- genetikk (4)
- genetisk analyse (1)
- geofysikk (9)
- geografi (1)
- geokjemi (1)
- geologi (8)
- geolokalisering (1)
- geostatistikk (1)
- geovitenskap (3)
- glasiologi (18)
- global klimamodell (2)
- global oppvarming (2)
- havet (2)
- havis (35)
- havis alger (1)
- havnivå (1)
- havnivåstigning (3)
- havsirkulasjon (1)
- havstrømmer (6)
- helse (1)
- historie (2)
- human impact (1)
- hvaler (5)
- hvalfangst (3)
- hydroakustikk (3)
- hydrografi (4)
- iceberg calving (1)
- infeksjon (1)
- innlandsis (7)
- internasjonal samarbeid (1)
- isberg (2)
- isbre (1)
- isbrem (6)
- isfjell (6)
- iskjerner (1)
- isshelf (14)
- kalving (1)
- karbon syklus (5)
- karbondioksid (7)
- karbonsyklus (1)
- kartlegging (1)
- kartografi (1)
- kjemi (6)
- klima (1)
- klimaendringer (33)
- klimaforskning (1)
- klimagasser (1)
- klimamodeller (22)
- klimatologi (23)
- knølhvaler (1)
- kommunikasjon (1)
- kontinentalmargin (1)
- kontinentalsokkel (1)
- krepsdyr (1)
- krill (20)
- kulturminner (1)
- kunst (1)
- kval (2)
- landfast havis (1)
- landfast sjøis (1)
- langmuirsirkulasjon (1)
- litosfæren (1)
- logistikk (1)
- marin biologi (50)
- marin geologi (1)
- marin økologi (6)
- marin zoologi (4)
- marinbiologi (2)
- marine økosystemer (20)
- matauk (1)
- menneskelig påvirkning (1)
- meteorologi (11)
- mikroorganismer (1)
- mikropaleontologi (1)
- mikroplast (1)
- miljøendringer (5)
- miljøgifter (3)
- miljøpåvirkning (1)
- miljøvern (3)
- morfologi (1)
- musikk (1)
- nedbør (1)
- næring (1)
- observasjoner (3)
- økofysiologi (1)
- økologi (7)
- økonomi (1)
- økosystem (1)
- økosystemer (5)
- økotoksikologi (1)
- oppvarming (1)
- ornitologi (5)
- oseanografi (65)
- overvåking (1)
- paleogeografi (1)
- paleoklimatologi (7)
- paleontologi (2)
- paleoseanografi (3)
- pattedyr (1)
- pelsseler (1)
- petreller (3)
- phytoplankton (2)
- pingviner (4)
- pinnipedier (1)
- plankton (16)
- planteplankton (1)
- plastpartikler (1)
- polarområdene (7)
- politikk (1)
- polynja (2)
- populasjonsbiologi (1)
- populærvitenskap (1)
- primærproduksjon (1)
- Rosshavet (4)
- Scotiahavet (3)
- sedimenter (1)
- serologi (1)
- sjøelefanter (1)
- sjøfugler (7)
- sjøis (28)
- sjøvann (1)
- skipsfart (1)
- skipsloggbøker (1)
- skyer (1)
- smelting (2)
- Sør-Orknøyene (1)
- Sør-Shetlandsøyene (1)
- Sørishavsstrømmen (2)
- superkjøling (1)
- taksonomi (1)
- teknologi (3)
- tektonikk (1)
- temperatur (1)
- tidevann (1)
- Troll forskningsstasjon (1)
- vannmasser (3)
- vannvirvler (1)
- vegetasjon (1)
- virologi (1)
- vulkanologi (1)
- Weddellhavet (19)
- zoogeografi (2)
- zoologi (7)
- zooplankton (4)
Resource type
- Book (1)
- Book Section (1)
- Journal Article (169)