Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 13 resources
-
Reconstructing past ice-sheet surface changes is key to testing and improving ice-sheet models. Data constraining the past behaviour of the East Antarctic Ice Sheet are sparse, limiting our understanding of its response to past, present and future climate change. Here, we report the first cosmogenic multi-nuclide (10Be, 26Al, 36Cl) data from bedrock and erratics on nunataks along the Jutulstraumen and Penck Trough ice streams in western Dronning Maud Land, East Antarctica. Spanning elevations between 741 and 2394 m above sea level, the samples have apparent exposure ages between 2 ka and 5 Ma. The highest-elevation bedrock sample indicates (near-) continuous minimum exposure since the Pliocene, with a low apparent erosion rate of 0.15 ± 0.03 m Ma−1, which is similar to results from eastern Dronning Maud Land. In contrast to studies in eastern Dronning Maud Land, however, our data show clear indications of a thicker-than-present ice sheet within the last glacial cycle, with a thinning of ∼35–120 m during the Holocene (∼2–11 ka). Difficulties in separating suitable amounts of quartz from the often quartz-poor rock-types in the area, and cosmogenic nuclides inherited from exposure prior to the last deglaciation, prevented robust thinning estimates from elevational profiles. Nevertheless, the results clearly demonstrate ice-surface fluctuations of several hundred meters between the current grounding line and the edge of the polar plateau for the last glacial cycle, a constraint that should be considered in future ice-sheet model simulations.
-
The bedrock of Mühlig-Hofmannfjella, central Dronning Maud Land in eastern Antarctica, is part of the high-grade Maud Belt and comprises a deep-seated metamorphic-plutonic complex. The P-T-t evolution of anatectic supracrustal gneisses has been recovered through a study of mineral assemblages, textural relationships and U-Pb ID TIMS geochronology on zircon and monazite followed by pseudosection modelling. Peak conditions reached granulite facies conditions (T ≥ 810–820 °C) at moderate crustal depths (P = ca. 8 kbar) and resulted in partial melting. Peak-pressure conditions were followed by isothermal decompression at elevated temperatures. After exhumation to crustal levels of about 4–5 kbar, the area underwent a final near-isobaric cooling, which is documented by a secondary growth of garnet. Zircons indicate a period of growth at 570–566 Ma, whereas monazite ages range from 610 to 525 Ma. A likely heat source for the granulite facies metamorphism is decay of radioactive heat-producing elements in the core of the orogen. The combined geochronology and metamorphic data indicate a prolonged, clockwise P-T path, which reflects collision and formation of a long-lived orogenic plateau.
-
Ice rises and rumples, locally grounded features adjacent to ice shelves, are relatively small yet play significant roles in Antarctic ice dynamics. Their roles generally depend upon their location within the ice shelf and the stage of the ice-sheet retreat or advance. Large, long-stable ice rises can be excellent sites for deep ice coring and paleoclimate study of the Antarctic coast and the Southern Ocean, while small ice rises tend to respond more promptly and can be used to reveal recent changes in regional mass balance. The coasts of Dronning Maud Land (DML) and Enderby Land in East Antarctica are abundant with these features. Here we review existing knowledge, presenting an up-to-date status of research in these regions with focus on ice rises and rumples. We use regional datasets (satellite imagery, surface mass balance and ice thickness) to analyze the extent and surface morphology of ice shelves and characteristic timescales of ice rises. We find that large parts of DML have been changing over the past several millennia. Based on our findings, we highlight ice rises suitable for drilling ice cores for paleoclimate studies as well as ice rises suitable for deciphering ice dynamics and evolution in the region.
-
Direct measurements of spatially distributed vertical strain within ice masses are scientifically valuable but challenging to acquire. We use manual marker tracking and automatic cross correlation between two repeat optical televiewer (OPTV) images of an ~100 m-long borehole at Derwael Ice Rise (DIR), Antarctica, to reconstruct discretised, vertical strain rate and velocity at millimetre resolution. The resulting profiles decay with depth, from −0.07 a−1 at the surface to ~−0.002 a−1 towards the base in strain and from −1.3 m a−1 at the surface to ~−0.5 m a−1 towards the base in velocity. Both profiles also show substantial local variability. Three coffee-can markers installed at different depths into adjacent boreholes record consistent strain rates and velocities, although averaged over longer depth ranges and subject to greater uncertainty. Measured strain-rate profiles generally compare closely with output from a 2-D ice-flow model, while the former additionally reveal substantial high-resolution variability. We conclude that repeat OPTV borehole logging represents an effective means of measuring distributed vertical strain at millimetre scale, revealing high-resolution variability along the uppermost ~100 m of DIR, Antarctica.
-
Late Tonian (ca. 785–760 Ma) granodioritic to granitic orthogneisses of the Schirmacher Oasis region in Dronning Maud Land (DML), East Antarctica, are interpreted as recording an active continental margin setting at the periphery of Kalahari and Rodinia. The rocks probably represent exposures of a significant tectonic province hidden beneath the ice, the erosional remnants of which are recorded as detrital zircons in late Tonian-Cryogenian metasedimentary rocks throughout central and eastern DML, as well as in ice-rafted debris from recent sediments offshore Dronning Maud Land. The orthogneisses have single-stage Sm-Nd model ages of ca. 1.3–1.5 Ga and zircon Hf-signatures (εHft = +2 – +5), indistinguishable from the adjacent Grenville-age basement rocks of easternmost Kalahari. Their geochemistry suggests that they evolved in the late stages of a continental margin magmatic arc and possibly within a roll-back tectonic framework, suggestive of subduction of relatively old oceanic lithosphere. The eastern Kalahari continental arc is one of a number of continental arcs that characterize the western part of the fragmenting Rodinia and document the supercontinent “turning inside out” after its formation at ca. 1000 Ma and a period of relative tectonic quiescence between ca. 900 and 800 Ma. The rocks show an ultra-high temperature metamorphic overprint that was accompanied by syn-tectonic magmatism from ca. 650 to 600 Ma. The high temperature metamorphism is interpreted to relate to back-arc extension that also led to major anorthosite magmatism elsewhere, prior to continental collision in the region. The rocks lack the subsequent widespread high-grade metamorphic overprint at ca. 590–500 Ma which occurs in the adjacent regions due to Himalayan-style continental collision along the East African-Antarctic Orogen during Gondwana assembly.
-
Reconstructing the response of present-day ice sheets to past global climate change is important for constraining and refining the numerical models which forecast future contributions of these ice sheets to sea-level change. Mapping landforms is an essential step in reconstructing glacial histories. Here we present a new map of glacial landforms and deposits on nunataks in western Dronning Maud Land, Antarctica. Nunataks are mountains or ridges that currently protrude through the ice sheet and may provide evidence that they have been wholly or partly covered by ice, thus indicating a formerly more extensive (thicker) ice sheet. The map was produced through a combination of mapping from Worldview satellite imagery and ground validation. The sub-metre spatial resolution of the satellite imagery enabled mapping with unprecedented detail. Ten landform categories have been mapped, and the landform distributions provide evidence constraining spatial patterns of a previously thicker ice sheet.
-
I denne oppgaven er forekomsten av fasescintillasjoner på GNSS-signaler over deler av Dronning Maud Land i Antarktis kartlagt, ved bruk av scintillasjonsmottakere på Troll stasjonen (geografiske koordinater: 72.0◦S, 2.5◦Ø, magnetiske koordinater: 62.8◦S, 47.8◦Ø) og SANAE IV (geografiske koordinater: 71.7◦S, 2.8◦V, magnetiske koordinater: 62.0◦S, 45.0◦Ø). Ionosfæren i dette området er lite studert tidligere, og dette er de første resultatene som presenteres fra det nylig etablerte Troll ionosfæriske observatoriet. Den første delen av oppgaven er en statistisk studie hvor forekomsten av scintillasjoner i 2018 er kartlagt. Hovedfunnet i denne studien er at høye fasescintillasjoner kun forekommer ved høy geomagnetisk aktivitet, forekomsten av scintillasjoner er høyere postmidnatt enn premidnatt og at scintillasjoner forekommer både innenfor og nord for den statistiske auroraovalen. I denne oppgaven er det også gjennomført to kasusstudier, en fra februar 2018 og en fra mars 2018. Kasusstudiene brukte satellittdata fra solvinden, Swarm, DMSP og bakkebaserte instrumenter: scintillasjonsmottakere, magnetometere og Superdarn, fra både den nordlige og sørlige halvkule. Hovedfunnene fra kasusstudiene er at scintillasjoner på Troll og Sanae kan assosieres med partikkelnedbør, sterke vestgående strømmer og høye konveksjonshastigheter. De viste også en hvis symmetri i forekomsten av scintillasjoner, men scintillasjonene var kraftigere og var til stede over en lengre tidsperiode i Antarktis enn på Færøyene.
-
The shape of ice shelf cavities are a major source of uncertainty in understanding ice-ocean interactions. This limits assessments of the response of the Antarctic ice sheets to climate change. Here we use vibroseis seismic reflection surveys to map the bathymetry beneath the Ekström Ice Shelf, Dronning Maud Land. The new bathymetry reveals an inland-sloping trough, reaching depths of 1,100 m below sea level, near the current grounding line, which we attribute to erosion by palaeo-ice streams. The trough does not cross-cut the outer parts of the continental shelf. Conductivity-temperature-depth profiles within the ice shelf cavity reveal the presence of cold water at shallower depths and tidal mixing at the ice shelf margins. It is unknown if warm water can access the trough. The new bathymetry is thought to be representative of many ice shelves in Dronning Maud Land, which together regulate the ice loss from a substantial area of East Antarctica.
-
Combining information from several channels of the Norwegian Institute for Air Research (NILU-UV) irradiance meter, one may determine the total ozone column (TOC) amount. A NILU-UV instrument has been deployed and operated on two locations at Troll research station in Jutulsessen, Queen Maud Land, Antarctica, for several years. The method used to determine the TOC amount is presented, and the derived TOC values are compared with those obtained from the Ozone Monitoring Instrument (OMI) located on NASA’s AURA satellite. The findings show that the NILU-UV TOC amounts correlate well with the results of the OMI and that the NILU-UV instruments are suitable for monitoring the long-term change and development of the ozone hole. Because of the large footprint of OMI, NILU-UV is a more suitable instrument for local measurements.
-
Dronning Maud Land (DML) is a key area for the better understanding of the geotectonic history and amalgamation processes of the southern part of Gondwana. Here, we present comprehensive new zircon U–Pb–Hf–O, whole-rock Sm–Nd isotopic and geochemical data for late Neoproterozoic-Cambrian igneous rocks along a profile from central to eastern DML, which provides new insights into the crustal evolution and tectonics of the region. In central DML, magmatism dominantly occurred at 530–485 Ma, with 650–600 Ma charnockite and anorthosite locally distributed at its eastern periphery. In contrast, eastern DML experienced long-term and continuous granitic magmatism from ca. 650 Ma to 500 Ma. In central DML, the 650–600 Ma samples are characterized by highly elevated δ18O (7.5–9.5‰) associated with slightly negative to positive εHf(t) values (−1 to +3), indicating significant addition of high-δ18O crustal components, such as sedimentary material at the margin of the Kalahari Craton. Evolved Hf isotopic signatures (εHf(t) = −15 to −6) and moderately elevated O isotopic data (δ18O = 6–8‰) of the Cambrian granitic rocks from central DML indicate a significant incorporation of the pre-existing, old continental crust. In eastern DML, the suprachondritic Hf–Nd isotope signatures and moderate δ18O values of the late Neoproterozoic granites (650–550 Ma) from the Sør Rondane Mountains support the view that they mainly originated from crust of the Tonian Oceanic Arc Super Terrane (TOAST). The post-540 Ma granites, however, have more evolved Hf and Nd isotopic compositions, suggesting an increasing involvement of older continental components during Cambrian magmatism. Nd isotopes of the Cambrian granitic rocks in DML display an increasingly more radiogenic composition towards the east with model ages ranging from late Archean to Mesoproterozoic times, which is in line with the isotopic trend of the Precambrian basement in this region. The late Neoproterozoic (>600 Ma) igneous rocks in central and eastern DML were emplaced in two independent subduction systems, at the periphery of the eastern Kalahari Craton and somewhere within the Mozambique Ocean respectively. The accretion and assembly of the TOAST to the eastern margin of the Kalahari Craton and their collision with surrounding continental blocks was followed by extensive post-collisional magmatism due to delamination tectonics and orogenic collapse in the Cambrian. The late Neoproterozoic–Cambrian igneous rocks in DML thus record an orogenic cycle from subduction-accretion, continental collision to post-collisional process during and after the assembly of Gondwana.
-
This study focusses on the Grenville-age Maud Belt in Dronning Maud Land (DML), East Antarctica, which was located at the margin of the Proto-Kalahari Craton during the assembly of Rodinia. We present new U–Pb zircon ages and Hf–O isotope analyses of mafic and granitic gneisses exposed in the Orvin-Wohlthat Mountains and Gjelsvikfjella, central DML (cDML). The geochronological data indicate continuous magmatic activity from 1160 to 1070 Ma which culminated at 1110–1090 Ma, followed by high-grade metamorphism between 1080 and 1030 Ma. The majority of zircons from the Orvin-Wohlthat Mountains exhibit radiogenic Hf isotopic compositions corresponding to suprachondritic εHf (t) values and Mesoproterozoic model ages, indicating crystallization from predominantly juvenile magmas. However, the involvement of ancient sedimentary material, which were most likely derived from the adjacent Proto-Kalahari Craton, is revealed by a few samples with negative to neutral εHf (t) and significantly elevated δ18O values (8–10‰). Samples from further west, in Gjelsvikfjella have more mantle-like zircon O isotopic compositions and late Paleoproterozoic Hf model ages, indicating the incorporation of ancient, previously mantle-derived continental crust. The rocks in cDML, thus define part of an extensive Mesoproterozoic magmatic arc with subduction under the Proto-Kalahari margin. This involved significant growth of new continental crust, possibly related to slab retreat, accompanied by subordinate recycling of older crustal components. The Maud Belt has previously been correlated with the 1250–1030 Ma Natal Belt in southern Africa, which lay to the west in the context of Gondwana, although this assertion has recently been questioned. Our study supports the latter view in demonstrating that the continental arc magmatism in the Maud Belt appears to be temporally and tectonically unconnected to the accretion of (slightly older) juvenile oceanic islands in the Natal Belt, which, in contrast to the Maud Belt, show subduction polarity away from the craton. We thus speculate that the Namaqua-Natal to Maud Belt contact (exposed in the Heimefront Shear Zone) may represent a changed tectonic environment from arc/continent-continent collision to slightly younger continental margin orogenesis at the westernmost termination of this part of the global Grenville Orogen. The Maud Belt marks the beginning of a major, long-lived accretionary Andean-type tectonic regime on the eastern margin of Proto-Kalahari in the Meso-Neoproterozoic during Rodinia assembly and break-up until the formation of Gondwana.
Explore
Topic
- Dronning Maud Land
- Antarctica (1)
- Antarktis (4)
- aurora (1)
- batymetri (1)
- brehylle (1)
- Cosmogenic isotopes (1)
- geokjemi (1)
- geokronologi (2)
- geologi (5)
- geomagnetiske stormer (1)
- geomorfologi (1)
- Glaciation (1)
- glasiologi (5)
- havnivåstigning (1)
- innlandsis (3)
- ionosfæren (1)
- isbreer (1)
- isbrem (1)
- isshelf (2)
- issmelting (1)
- klimaendringer (3)
- kontinentalsokkel (1)
- meteorologi (1)
- nunataker (1)
- overvåkning (1)
- ozonhull (1)
- ozonlaget (1)
- paleoglasiologi (1)
- polarforskning (1)
- Quaternary (1)
- romfysikk (1)
- seismologi (1)
- snø (1)
- Sørishavet (2)
- sørlys (1)
- termokronologi (1)
- Troll forskningsstasjon (2)
- ultrafiolett stråling (1)
Resource type
- Book (1)
- Conference Paper (1)
- Journal Article (10)
- Thesis (1)