Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 7 resources
-
Circulation and water masses in the greater Prydz Bay region were surveyed in the austral summer 2021 (January-March) during the ‘Trends in Euphausiids off Mawson, Predators and Oceanography’ (TEMPO) experiment, and are described in this paper. The Southern Antarctic Circumpolar Current Front is found in the northern part of the survey area, generally near 63-64°S, whereas the Southern Boundary Front is located between 64 and 65.5°S. The westward flowing Antarctic Slope Front (ASF) is found in the southern part of the survey area near the continental slope on most transects. Highest concentrations of oxygen (> 300 µmol kg−1) are found in shelf waters at stations in Prydz Bay, south of 67°S along 75°E, whereas the lowest oxygen values are found in the Circumpolar Deep Water layer, with an average of roughly 215 µmol kg−1. North of the northern extension of the ASF, surface mixed layers are between 20 and 60 m deep. Mixed layers tend to deepen slightly in the northern part of the survey, generally increasing north of 64°S where the ocean has been ice-free the longest. We find evidence of upwelling of waters into the surface layers, based on temperature anomaly, particularly strong along 80°E. Enhanced variability of biogeochemical properties - nutrients, DIC, DO - in the AASW layer is driven by a combination of sea-ice and biological processes. Antarctic Bottom Water, defined as water with neutral density > 28.3 kg m-3, was sampled at all the offshore full-depth stations, with a colder/fresher variety along western transects and a warmer/saltier variety in the east. Newly formed Antarctic Bottom Water – the coldest, freshest, and most recently ventilated – is mostly found in the deep ocean along 65°E, in the base of the Daly Canyon.
-
Our study makes use of a fortuitous oceanographic data set collected around the remote sub-Antarctic island of Bouvetøya by a conductivity–temperature–depth recorder (CTD) integrated with a satellite-relayed data logger deployed on an adult female southern elephant seal (Mirounga leonina) to describe the seasonal evolution of the western shelf waters. The instrumented seal remained in waters over the shelf for 259 days, collecting an average of 2.6 (±0.06) CTD profiles per day, providing hydrographic data encompassing the late austral summer and the entire winter. These data document the thermal stratification of the upper water layer due to summer surface heating of the previous year's Antarctic Surface Water, giving way to a cold subsurface layer at about 100 m as the austral winter progressed, with a concomitant increase in salinity of the upper layer. Upper Circumpolar Deep Water was detected at a depth of approximately 200 m along the western shelf of Bouvetøya throughout the year. These oceanographic data represent the only seasonal time series for this region and the second such animal–instrument oceanographic time series in the sub-Antarctic domain of the Southern Ocean.
-
Investigating the interbasin deepwater exchange between the Pacific and Atlantic Oceans over glacial-interglacial climate cycles is important for understanding circum-Antarctic Southern Ocean circulation changes and their impact on the global Meridional Overturning Circulation. We use benthic foraminiferal δ13C records from the southern East Pacific Rise to characterize the δ13C composition of Circumpolar Deep Water in the South Pacific, prior to its transit through the Drake Passage into the South Atlantic. A comparison with published South Atlantic deepwater records from the northern Cape Basin suggests a continuous water mass exchange throughout the past 500 ka. Almost identical glacial-interglacial δ13C variations imply a common deepwater evolution in both basins suggesting persistent Circumpolar Deep Water exchange and homogenization. By contrast, deeper abyssal waters occupying the more southern Cape Basin and the southernmost South Atlantic have lower δ13C values during most, but not all, stadial periods. We conclude that these values represent the influence of a more southern water mass, perhaps Antarctic Bottom Water (AABW). During many interglacials and some glacial periods, the gradient between Circumpolar Deep Water and the deeper southern Cape Basin bottom water disappears suggesting either no presence of AABW or indistinguishable δ13C values of both water masses.
-
We investigated deep water changes in the Southern Ocean during the last glacial inception, in relationship to surface hydrology and global climatology, to better understand the mechanisms of the establishment of a glacial ocean circulation. Changes in benthic foraminiferal δ13C from three high-resolution cores are compared and indicate decoupled intermediate and deep water changes in the Southern Ocean. From the comparison with records from the North Atlantic, South Atlantic, and the Southern Ocean, we show that the early southern deep water δ13C drop observed at the MIS 5.5–5.4 transition occurred before any significant reduction of North Atlantic Deep Water ventilation. We propose that this drop is linked to the northward expansion of poorly ventilated Antarctic Bottom Water (AABW) mass in the Southern Ocean. Associated with an early cooling in the high southern latitudes, the westerly winds and surface oceanic fronts would migrate equatorward, thus weakening the upwelling of Circumpolar Deep Waters. Reduced heat brought to Antarctic surface waters would enhance sea ice formation during winters and the deep convection of cold and poorly ventilated AABW.
-
Interactions between the Southern Ocean and the Weddell Sea ice shelves are important both to the Antarctic Ice Sheet and to the production of globally significant water masses. Here we review the interaction between the Filchner-Ronne Ice Shelf and the shelf sea in which it floats. The continental shelf processes leading to the production of Weddell Sea deep and bottom waters from the original off-shelf source waters are discussed, and a new view is offered of the initial production of High-Salinity Shelf Water. Data from ship-based measurements at the ice front, from glaciological methods, and from measurements made within the sub–ice shelf cavity itself are used to describe the pattern of flows beneath the ice shelf. We also consider the variability observed within the cavity from tidal to interannual time scales and finish with a discussion of future research priorities in the region.
-
We use new data from the southern Weddell Sea continental shelf to describe water mass conversion processes in a formation region for cold and dense precursors of Antarctic Bottom Water. The cruises took place in early 1995, 1998, and 1999, and the time series obtained from moored instruments were up to 30 months in length, starting in 1995. We obtained new bathymetric data that greatly improve our definition of the Ronne Depression, which is now shown to be limited to the southwestern continental shelf and so cannot act as a conduit to northward flow from Ronne Ice Front. Large-scale intrusions of Modified Warm Deep Water (MWDW) onto the continental shelf occur along much of the shelf break, although there is only one location where the MWDW extends as far south as Ronne Ice Front. High-Salinity Shelf Water (HSSW) produced during the winter months dominates the continental shelf in the west. During summer, Ice Shelf Water (ISW) exits the subice cavity on the eastern side of the Ronne Depression, flows northwest along the ice front, and reenters the cavity at the ice front's western limit. During winter the ISW is not observed in the Ronne Depression north of the ice front. The flow of HSSW into the subice cavity via the Ronne Depression is estimated to be 0.9 ± 0.3 Sv. When combined with inflows along the remainder of Ronne Ice Front (reported elsewhere), sufficient heat is transported beneath the ice shelf to power an average basal melt rate of 0.34 ± 0.1 m yr−1.
-
We have investigated the intermediate water mass of the central Weddell Gyre using TCO2 and oxygen data of FS Polarstern cruises in 1992, 1996 and 1998. This water mass, designated as Central Intermediate Water (CIW), is enriched in CO2 and depleted in O-2 relative to its source water due to biological degradation. CO2 enrichment and O-2 depletion were quantified by calculating the difference between the concentrations in the CIW and those in the, more southern source water, the Circumpolar Deep Water, which derives from the Antarctic Circumpolar Current. Inventories of enrichment and depletion were determined over the whole depth range of CIW, i.e. about 200800 m. The O-2 depletion inventory was greater than that of TCO2 enrichment which is in line with a biological origin of the signal. Spatial and interannual variation appeared to be small. Because subsurface remineralization in the central Weddell Gyre is largely restricted to the CIW, the export production estimate from previous work has been applied to compute the renewal time of CIW from these inventories. A renewal time of only three years was found. TCO2- and O-2-based computations were consistent, the former showing larger variation, though. From renewal time and volume of the CIW, a transport velocity (renewal rate) of 6-7 Sv was obtained. Of this, about I Sv is upwelled into the surface layer. The remaining 5-6 Sv CIW must be exported to the north, which is opposite to previous views. Results of water mass age and transport rate have thus been obtained using a method based on biogeochemical parameters. As the CIW cannot be identified by temperature and salinity, nor with transient tracers because it is hardly ventilated, this is the only way to obtain such results. As part of the CIW export, a large amount of remineralized CO2 enters the abyssal oceans where it is sequestered for long periods of time. The CIW is a principal and highly efficient player in the biological pump mechanism of the Southern Ocean.
Explore
Topic
- AABW
- Antarktis (1)
- biogeokjemi (1)
- biotelemetri (1)
- Bouvetøya (1)
- bunnvann (1)
- geofysikk (2)
- glasiologi (1)
- havstrømmer (3)
- hydrografi (1)
- hydrologi (1)
- innlandsis (1)
- isfront (1)
- isshelf (2)
- klimatologi (2)
- kontinentalsokkel (1)
- marin biologi (1)
- oseanografi (6)
- paleoklimatologi (1)
- paleoseanografi (2)
- seler (1)
- Sørishavet (6)
- Sørishavsstrømmen (1)
- vannmasser (4)
- Weddellhavet (3)
Resource type
- Journal Article (7)
Publication year
-
Between 2000 and 2025
- Between 2000 and 2009 (4)
-
Between 2010 and 2019
(2)
- 2016 (2)
-
Between 2020 and 2025
(1)
- 2024 (1)
Online resource
- yes (7)