Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 6 resources
-
Winter climate and snow cover are the important drivers of plant community development in polar regions. However, the impacts of changing winter climate and associated changes in snow regime have received much less attention than changes during summer. Here, we synthesize the results from studies on the impacts of extreme winter weather events on polar heathland and lichen communities. Dwarf shrubs, mosses and soil arthropods were negatively impacted by extreme warming events while lichens showed variable responses to changes in extreme winter weather events. Snow mould formation underneath the snow may contribute to spatial heterogeneity in plant growth, arthropod communities and carbon cycling. Winter snow cover and depth will drive the reported impacts of winter climate change and add to spatial patterns in vegetation heterogeneity. The challenges ahead lie in obtaining better predictions on the snow patterns across the landscape and how these will be altered due to winter climate change.
-
Lichens, symbiotic associations of fungi (mycobionts) and green algae or cyanobacteria (photobionts), are poikilohydric organisms that are particularly well adapted to withstand adverse environmental conditions. Terrestrial ecosystems of the Antarctic are therefore largely dominated by lichens. The effects of global climate change are especially pronounced in the maritime Antarctic and it may be assumed that the lichen vegetation will profoundly change in the future. The genetic diversity of populations is closely correlated to their ability to adapt to changing environmental conditions and to their future evolutionary potential. In this study, we present evidence for low genetic diversity in Antarctic mycobiont and photobiont populations of the widespread lichen Cetraria aculeata. We compared between 110 and 219 DNA sequences from each of three gene loci for each symbiont. A total of 222 individuals from three Antarctic and nine antiboreal, temperate and Arctic populations were investigated. The mycobiont diversity is highest in Arctic populations, while the photobionts are most diverse in temperate regions. Photobiont diversity decreases significantly towards the Antarctic but less markedly towards the Arctic, indicating that ecological factors play a minor role in determining the diversity of Antarctic photobiont populations. Richness estimators calculated for the four geographical regions suggest that the low genetic diversity of Antarctic populations is not a sampling artefact. Cetraria aculeata appears to have diversified in the Arctic and subsequently expanded its range into the Southern Hemisphere. The reduced genetic diversity in the Antarctic is most likely due to founder effects during long-distance colonization. The environmental conditions of the Antarctic are among the most adverse on Earth and are generally characterized by low mean annual temperatures, high wind velocities, extreme drought and extended periods of darkness. The effects of global climate change are especially pronounced in parts of the Antarctic (Turner et al. 2005). Air temperature in the maritime Antarctic has steadily increased within the last years (Smith & Stammerjohn 1996; Turner et al. 2005). On the western Antarctic Peninsula a temperature increase of more than 2.5 K has been observed over the last 50 years. The overall effect of such a temperature increase on terrestrial Antarctic organisms could be beneficial. For example, glacial melting will increase the availability of terrestrial (page number not for citation purpose). Keywords Genetic diversity; lichens; Cetraria aculeata; Trebouxia jamesii; polar lichens; global change.
-
Soil trampling is one of the most obvious direct negative human impacts in Antarctica. Through a range of experiments and field studies based on quantitative physical (soil penetration resistance) and biological (collembolan abundance) indicators, we evaluate the current codes of conduct relating to the protection of Antarctic soils from the consequences of pedestrian impacts. These guidelines include using, where available, established paths that cross vegetation-free soils. However, the effectiveness of this strategy is highly dependent on context. Limited intensity use - below 100 foot passes per year - produces small changes at the soil surface that can recover relatively rapidly, suggesting that the dispersal of activity across wider corridors may be the most appropriate option. However, for paths with a higher use level and those located in steep-sloped sites, it is desirable to define a single track, following stony or bouldery surfaces wherever possible, to keep the disturbed area to a minimum. It is clear that both environmental conditions and expected use levels must be taken into account in determining when and where it is more appropriate to concentrate or disperse human activities. Even though they may have performed satisfactorily to date, the increasing pressure in terms of numbers of visits for certain sites may make it necessary to revise existing codes of conduct. Keywords: Trampling impacts; environmental monitoring; low impact practices; soil resilience; soil penetration resistance; collembolan abundance.
-
The thematic cluster ‘‘Human impacts in the Arctic and Antarctic’’ in Polar Research has its origins in the International Polar Year (2007-09) Oslo Science Conference held in Oslo, Norway, from 8 to 12 June 2010. We were the co-convenors of the session ‘‘Human impacts in the Arctic and Antarctic: regulatory and management implications,’’ in which 27 talks and 21 posters were presented over the course of two days. We invited contributors to the conference session to explore all types of impacts of human activities and regional environmental change in the polar regions, with a special focus on highlighting the management priorities for the protection of the landscape (environment and people) of the polar regions in the face of increasing human activity. Exploring a wide range of topics ranging from human wildlife interactions to chemical contamination and from whaling to polar tourism, contributors provided examples of existing environmental management regimes that are working as well as those that are not.
-
Affiliations of the dominant culturable bacteria isolated from Potter Cove, South Shetland Islands, Antarctica, were investigated together with their production of cold-active hydrolytic enzymes. A total of 189 aerobic heterotrophic bacterial isolates were obtained at 4°C and sorted into 63 phylotypes based on their amplified ribosomal DNA restriction analysis profiles. The sequencing of the 16S rRNA genes of representatives from each phylotype showed that the isolates belong to the phyla Proteobacteria (classes Alpha- and Gamma-proteobacteria), Bacteroidetes (class Flavobacteria), Actinobacteria (class Actinobacteria) and Firmicutes (class Bacilli). The predominant culturable group in the site studied belongs to the class Gammaproteobacteria, with 65 isolates affiliated to the genus Pseudoalteromonas and 58 to Psychrobacter. Among the 189 isolates screened, producers of amylases (9.5%), pectinases (22.8%), cellulases (14.8%), CM-cellulases (25.4%), xylanases (20.1%) and proteases (44.4%) were detected. More than 25% of the isolates produced at least one extracellular enzyme, with some of them producing up to six of the tested extracellular enzymatic activities. These results suggest that a high culturable bacterial diversity is present in Potter Cove and that this place represents a promising source of biomolecules. Keywords: Microbial enzymes; Antarctic bacteria; marine bacteria; cold enzymes; psychrophiles.
Explore
Topic
- økosystemer
- alger (2)
- Antarktis (5)
- bakterier (1)
- biodiversitet (2)
- biologi (1)
- biosfære (1)
- botanikk (1)
- dyr (1)
- forurensning (1)
- fotobiont (1)
- genetisk mangfold (1)
- jord (1)
- klimaendringer (2)
- lav (1)
- leddyr (1)
- marin biologi (1)
- menneskelig påvirkning (2)
- miljø (1)
- miljøvern (2)
- økologi (2)
- oseanografi (1)
- planter (1)
- polarområdene (1)
- sjøvann (1)
- snø (1)
- sopper (2)
- Sørishavet (1)
- turisme (1)
- zoologi (1)
Resource type
- Journal Article (6)
Publication year
Online resource
- yes (6)