Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 51 resources
-
The rapid diversification of notothenioid fishes in the waters surrounding the Antarctic continent is a prime example of the process of adaptive radiation. Within around 10 million years, Antarctic notothenioids have diversified into over 100 species with a broad range of lifestyles and ecological adaptations. However, the exact number of species within this radiation has long been unclear. Particularly challenging is the taxonomy of the genus Channichthys, for which between one and nine species have been recognized by different authors. The putative species from this genus are known from a limited number of representative specimens, of which most were sampled decades ago. Here, we investigated the mitochondrial genomes of museum specimens representing the four recently recognized species Unicorn Icefish (C. rhinoceratus), Red Icefish (C. rugosus), Sailfish Pike (C. velifer), and Charcoal Icefish (C. panticapaei), complemented by morphological analyses. All analyzed specimens were collected in the 1960s and 1970s and fixed in formaldehyde, and their DNA has thus been heavily degraded. Applying ancient-DNA protocols for DNA extraction and single-stranded library preparation, we were nevertheless able to obtain sufficient endogenous DNA to reconstruct the mitochondrial genomes of one specimen of each species. These mitochondrial genome sequences were nearly identical for the three specimens assigned to Unicorn Icefish, Red Icefish, and Sailfish Pike, while greater mitochondrial divergence was observed for the Charcoal Icefish specimens. We discuss possible explanations of the contrast between these molecular results and the recognizable morphological variation found among the four species, and recommend that at least the Charcoal Icefish be included the list of valid icefish and notothenioid species.Competing Interest StatementThe authors have declared no competing interest.
-
Abstract Information on marine predator at-sea distributions is key to understanding ecosystem and community dynamics and an important component of spatial management frameworks that aim to identify regions important for conservation. Tracking data from seabirds are widely used to define priority areas for conservation, but such data are often restricted to the breeding population. This also applies to penguins in Antarctica, where identification of important habitat for nonbreeders has received limited attention. Nonbreeding penguins are expected to have larger foraging distributions than breeding conspecifics, which may alter their interactions with physical environmental factors, conspecifics, other marine predators, and threats. We studied the movement behavior of nonbreeding Adélie penguins tracked during the 2016/2017 breeding season at King George Island in the South Shetland Islands, Antarctica. We quantify how nonbreeding penguins' horizontal moment behavior varies in relation to environmental conditions and assess the extent of spatial overlap in the foraging ranges of nonbreeders and breeders, which were tracked over several years. Nonbreeders increased their prey search and area-restricted foraging behavior as sea surface temperature and bottom depths decreased, and in response to increasing sea ice concentration. Nonbreeders tended to transit (high directional movement) over the relatively deep Central Basin of the Bransfield Strait. The majority of foraging behavior occurred within the colder, Weddell Sea?sourced water of the Antarctic Coastal Current (incubation) and in the Weddell Sea (crèche). The utilization distributions of breeders and nonbreeders overlapped in the central Bransfield Strait. Spatial segregation was greater during the crèche stage of breeding compared to incubation and brood, because chick provisioning still constrained the foraging range of breeders to a scale of a few tens of kilometers, while nonbreeders commenced with premolt foraging trips into the Weddell Sea. Our results show that breeding and nonbreeding penguins may not be impacted similarly by local environmental variability, given that their spatial and temporal scales of foraging differ during some part of the austral summer. Our study highlights the need to account for different life history stages when characterizing foraging behavior of marine predator populations. This is particularly important for ?sentinel? species monitored as part of marine conservation and ecosystem-based management programs.
-
The flightless midge Eretmoptera murphyi is thought to be continuing its invasion of Signy Island via the treads of personnel boots. Current boot-wash biosecurity protocols in the Antarctic region rely on microbial biocides, primarily Virkon® S. As pesticides have limited approval for use in the Antarctic Treaty area, we investigated the efficacy of Virkon® S in controlling the spread of E. murphyi using boot-wash simulations and maximum threshold exposures. We found that E. murphyi tolerates over 8 h of submergence in 1% Virkon® S. Higher concentrations increased effectiveness, but larvae still exhibited > 50% survival after 5 h in 10% Virkon® S. Salt and hot water treatments (without Virkon® S) were explored as possible alternatives. Salt water proved ineffective, with mortality only in first-instar larvae across multi-day exposures. Larvae experienced 100% mortality when exposed for 10 s to 50°C water, but they showed complete survival at 45°C. Given that current boot-wash protocols alone are an ineffective control of this invasive insect, we advocate hot water (> 50°C) to remove soil, followed by Virkon® S as a microbial biocide on ‘clean’ boots. Implications for the spread of invasive invertebrates as a result of increased human activity in the Antarctic region are discussed.
-
For procellariiform seabirds, wind and morphology are crucial determinants of flight costs and flight speeds. During chick-rearing, parental seabirds commute frequently to provision their chicks, and their body mass typically changes between outbound and return legs. In Antarctica, the characteristic diurnal katabatic winds, which blow stronger in the mornings, form a natural experimental setup to investigate flight behaviors of commuting seabirds in response to wind conditions. We GPS-tracked three closely related species of sympatrically breeding Antarctic fulmarine petrels, which differ in wing loading and aspect ratio, and investigated their flight behavior in response to wind and changes in body mass. Such information is critical for understanding how species may respond to climate change. All three species reached higher ground speeds (i.e., the speed over ground) under stronger tailwinds, especially on return legs from foraging. Ground speeds decreased under stronger headwinds. Antarctic petrels (Thalassoica antarctica; intermediate body mass, highest wing loading, and aspect ratio) responded stronger to changes in wind speed and direction than cape petrels (Daption capense; lowest body mass, wing loading, and aspect ratio) or southern fulmars (Fulmarus glacialoides; highest body mass, intermediate wing loading, and aspect ratio). Birds did not adjust their flight direction in relation to wind direction nor the maximum distance from their nests when encountering headwinds on outbound commutes. However, birds appeared to adjust the timing of commutes to benefit from strong katabatic winds as tailwinds on outbound legs and avoid strong katabatic winds as headwinds on return legs. Despite these adaptations to the predictable diurnal wind conditions, birds frequently encountered unfavorably strong headwinds, possibly as a result of weather systems disrupting the katabatics. How the predicted decrease in Antarctic near-coastal wind speeds over the remainder of the century will affect flight costs and breeding success and ultimately population trajectories remains to be seen.
-
In the Southern Ocean, large-scale phytoplankton blooms occur in open water and the sea-ice zone (SIZ). These blooms have a range of fates including physical advection, downward carbon export, or grazing. Here, we determine the magnitude, timing and spatial trends of the biogeochemical (export) and ecological (foodwebs) fates of phytoplankton, based on seven BGC-Argo floats spanning three years across the SIZ. We calculate loss terms using the production of chlorophyll—based on nitrate depletion—compared with measured chlorophyll. Export losses are estimated using conspicuous chlorophyll pulses at depth. By subtracting export losses, we calculate grazing-mediated losses. Herbivory accounts for ~90% of the annually-averaged losses (169 mg C m−2 d−1), and phytodetritus POC export comprises ~10%. Furthermore, export and grazing losses each exhibit distinctive seasonality captured by all floats spanning 60°S to 69°S. These similar trends reveal widespread patterns in phytoplankton fate throughout the Southern Ocean SIZ.
-
Ecological niche theory predicts sympatric species to show segregation in their spatio-temporal habitat utilization or diet as a strategy to avoid competition. Similarly, within species individuals may specialize on specific dietary resources or foraging habitats. Such individual specialization seems to occur particularly in environments with predictable resource distribution and limited environmental variability. Still, little is known about how seasonal environmental variability affects segregation of resources within species and between closely related sympatric species. The aim of the study was to investigate the foraging behaviour of three closely related and sympatrically breeding fulmarine petrels (Antarctic petrels Thalassoica antarctica, cape petrels Daption capense and southern fulmars Fulmarus glacialoides) in a seasonally highly variable environment (Prydz Bay, Antarctica) with the aim of assessing inter- and intraspecific overlap in utilized habitat, timing of foraging and diet and to identify foraging habitat preferences. We used GPS loggers with wet/dry sensors to assess spatial habitat utilization over the entire breeding season. Trophic overlap was investigated using stable isotope analysis based on blood, feathers and egg membranes. Foraging locations were identified using wet/dry data recorded by the GPS loggers and expectation-maximization binary clustering. Foraging habitat preferences were modelled using generalized additive models and model cross-validation. During incubation and chick-rearing, the utilization distribution of all three species overlapped significantly and species also overlapped in the timing of foraging during the day—partly during incubation and completely during chick-rearing. Isotopic centroids showed no significant segregation between at least two species for feathers and egg membranes, and among all species during incubation (reflected by blood). Within species, there was no individual specialization in foraging sites or environmental space. Furthermore, no single environmental covariate predicted foraging activity along trip trajectories. Instead, best-explanatory environmental covariates varied within and between individuals even across short temporal scales, reflecting a highly generalist behaviour of birds. Our results may be explained by optimal foraging theory. In the highly productive but spatio-temporally variable Antarctic environment, being a generalist may be key to finding mobile prey—even though this increases the potential for competition within and among sympatric species.
-
There is a paucity of information on the foraging ecology, especially individual use of sea-ice features and icebergs, over the non-breeding season in many seabird species. Using geolocators and stable isotopes, we defined the movements, distribution and diet of adult Antarctic petrels Thalassoica antarctica from the largest known breeding colony, the inland Svarthamaren, Antarctica. More specifically, we examined how sea-ice concentration and free-drifting icebergs affect the distribution of Antarctic petrels. After breeding, birds moved north to the marginal ice zone (MIZ) in the Weddell sector of the Southern Ocean, following its northward extension during freeze-up in April, and they wintered there in April–August. There, the birds stayed predominantly out of the water (60–80% of the time) suggesting they use icebergs as platforms to stand on and/or to rest. Feather δ15N values encompassed one full trophic level, indicating that birds fed on various proportions of crustaceans and fish/squid, most likely Antarctic krill Euphausia superba and the myctophid fish Electrona antarctica and/or the squid Psychroteuthis glacialis. Birds showed strong affinity for the open waters of the northern boundary of the MIZ, an important iceberg transit area, which offers roosting opportunities and rich prey fields. The strong association of Antarctic petrels with sea-ice cycle and icebergs suggests the species can serve, year-round, as a sentinel of environmental changes for this remote region.
-
The Retrospective Analysis of Antarctic Tracking Data (RAATD) is a Scientific Committee for Antarctic Research project led jointly by the Expert Groups on Birds and Marine Mammals and Antarctic Biodiversity Informatics, and endorsed by the Commission for the Conservation of Antarctic Marine Living Resources. RAATD consolidated tracking data for multiple species of Antarctic meso- and top-predators to identify Areas of Ecological Significance. These datasets and accompanying syntheses provide a greater understanding of fundamental ecosystem processes in the Southern Ocean, support modelling of predator distributions under future climate scenarios and create inputs that can be incorporated into decision making processes by management authorities. In this data paper, we present the compiled tracking data from research groups that have worked in the Antarctic since the 1990s. The data are publicly available through biodiversity.aq and the Ocean Biogeographic Information System. The archive includes tracking data from over 70 contributors across 12 national Antarctic programs, and includes data from 17 predator species, 4060 individual animals, and over 2.9 million observed locations.
-
Vegetation near bird and seal rookeries typically has high δ15N signatures and these high values are linked to the enriched δ15N values of rookery soils. However, Antarctic cryptogams are mostly dependent on atmospheric ammonia (NH3) and volatized NH3 from rookeries is severely depleted in δ15N-NH3. So there is an apparent discrepancy between the isotopically depleted source (NH3) and δ15N-enriched vegetation. In this article, we aim to resolve this discrepancy to better understand the mechanisms and processes involved in isotopic changes during nitrogen transfer between Antarctic marine and terrestrial ecosystems. Under laboratory conditions, we quantified whether volatized NH3 affects the isotopic signature of cryptogams. NH3 volatilizing from penguin guano and elephant seal dung was depleted (44–49‰) in δ15N when captured on acidified filters, compared to the source itself. Cryptogams exposed to the volatized NH3 were enriched (18.8–23.9‰) in δ15N. The moss Andreaea regularis gained more nitrogen (0.9%) than the lichen Usnea antarctica (0.4%) from volatilized NH3, indicating a potential difference in atmospheric NH3 acquisition that is consistent with existing field differences in nitrogen concentrations and δ15N between mosses and lichens in general. This study clarifies the δ15N enrichment of cryptogams resulting from one of the most important nitrogen pathways for Antarctic vegetation.
-
There is increasing interest in using higher-trophic level predators as ecosystem indicators because their performance is presumed to be linked to the overall function of the ecosystem that supports them. In the southwest Atlantic sector of the Southern Ocean, Antarctic krill (Euphausia superba) supports huge predator populations as well as a growing commercial fishery. To utilize information from the ecosystem in an adaptive framework for sustainably managing krill catch levels, performance indices of krill predators have been proposed as a proxy for krill abundance. However, there are several potentially confounding sources of variability that might impact predator performance such as the effects of environmental variability and fishing pressure on krill availability at scales relevant to predators. In this context, our study capitalises on the occurrence of an unexpected El Niño event to characterise how environmental variability can drive changes in predator foraging behaviour. We demonstrate a clear link between coastal downwelling and changes in the at-sea habitat usage of chinstrap penguins (Pygoscelis antarctica) foraging in a local krill fishing area. Penguins tracked from their breeding colonies on Powell Island, Antarctic Peninsula, undertook fewer, longer foraging trips during the downwelling-affected season compared with the season where no such downwelling was detected, suggesting that changes in climate-driven oceanography may have reduced krill availability along the northern shelf of the island. Our study demonstrates that penguin foraging behaviour is modified by scale-dependent processes, which if not accounted for may result in erroneous conclusions being drawn when using penguins as bioindicators of krill abundance.
-
During February–March of the austral summers of 2013/14 and 2014/2015, fieldwork was performed on Half Moon Island, South Shetland Archipelago, Antarctica, to evaluate the distribution and abundance of mosses and lichens, as well as to describe and map the plant communities there. The quadrat (20 × 20 cm) sampling method was employed in a phytosociological study that aimed to describe these communities. The area was mapped using an Astech Promark II® DGPS, yielding sub-metric precision after post-processing with software. The number of species totalled 38 bryophytes, 59 lichens, only one flowering plant (Deschampsia antarctica Desv.), and two macroscopic terrestrial algae. Five types of plant communities were identified on the island, as follows: (1) fruticose lichen and moss cushion, (2) moss carpet, (3) muscicolous lichen, (4) crustose lichen and (5) moss turf.
-
The genesis of phytoplankton blooms and the fate of their biomass in iron-limited, high-nutrient-low-chlorophyll regions can be studied under natural conditions with ocean iron fertilization (OIF) experiments. The Indo-German OIF experiment LOHAFEX was carried out over 40 d in late summer 2009 within the cold core of a mesoscale eddy in the productive south-west Atlantic sector of the Southern Ocean. Silicate concentrations were very low, and phytoplankton biomass was dominated by autotrophic nanoflagellates (ANF) in the size range 3-10 µm. As in all previous OIF experiments, the phytoplankton responded to iron fertilization by increasing the maximum quantum yield (Fv/Fm) and cellular chlorophyll levels. Within 3 wk, chlorophyll levels tripled and ANF biomass doubled. With the exception of some diatoms and dinoflagellates, the biomass levels of all other groups of the phyto- and protozooplankton (heterotrophic nanoflagellates, dinoflagellates and ciliates) remained remarkably stable throughout the experiment both inside and outside the fertilized patch. We attribute the unusually high biomass attained and maintained by ANF to the absence of their grazers, the salps, and to constraints on protozooplankton grazers by heavy predation exerted by the large copepod stock. The resistance to change of the ecosystem structure over 38 d after fertilization, indicated by homogeneity at regional and temporal scales, suggests that it was locked into a stable, mature state that had evolved in the course of the seasonal cycle. The LOHAFEX bloom provides a case study of a resistant/robust dynamic equilibrium between auto- and heterotrophic ecosystem components resulting in low vertical flux both inside and outside the patch despite high biomass levels. KEYWORDS: Antarctic · Protists · Fe-limitation · Si-limitation · Ecology-biogeochemistry relationship · Carbon:chlorophyll ratios · Ecosystem stability
-
The continental shelf of Antarctica harbours rich suspension-feeding macroinvertebrate communities that are continuously exposed to large populations of free-living microbes. To avoid settlement or fouling by undesirable microorganisms that could cause infection or collapse filter-feeding systems, these macroinvertebrates might regulate the epibiotic microbial mat through chemical interactions. In Antarctic chemical ecology, the antibacterial roles of natural products remain mostly unknown. A necessary first step is to identify organisms that produce compounds with potential ecological relevance. For that reason, we tested the crude organic extracts of 116 taxa of Antarctic benthic organisms for antibacterial activity against a panel of seven strains of marine bacteria. Nine out of 11 phyla tested had antibacterial properties. However, inhibitory activity was quite selective and species-specific. These patterns suggest that Antarctic benthic organisms may produce diverse bioactive metabolites with different antibacterial activities or, alternatively, those contrasting profiles may be shaped by environmental and biological interactions acting at a small spatial scale. The reasons of such selectivity remain to be further investigated and may contribute to the identification of bioactive compounds with pharmaceutical applications.
-
It is generally accepted that Antarctic terrestrial diversity decreases as latitude increases, but latitudinal patterns of several organisms are not always as clear as expected. The Victoria Land region is rich in lakes and ponds and spans 8 degrees of latitude that encompasses gradients in factors such as solar radiation, temperature, ice cover and day length. An understanding of the links between latitudinally driven environmental and biodiversity changes is essential to the understanding of the ecology and evolution of Antarctic biota and the formulation of hypotheses about likely future changes in biodiversity. As several studies have demonstrated that photosynthetic pigments are an excellent, although underused, tool for the study of lacustrine algal communities, the aim of the present study was to investigate variations in algal biomass and biodiversity across the latitudinal gradient of Victoria Land using sedimentary pigments. We test the hypothesis that the biodiversity of freshwater environments decreases as latitude increases. On the basis of our results, we propose using the number of sedimentary pigments as a proxy for algal diversity and the sum of chlorophyll a and bacteriochlorophyll a with their degradation derivatives as an index of biomass. Overall, our data show that biomass and diversity decrease as latitude increases but local environmental conditions, in particular, natural levels of eutrophy, can affect both productivity and diversity. Keywords: Biodiversity; photosynthetic pigments; proxy; continental Antarctica; sediments; biogeography.
-
The muddy bottoms of inner Potter Cove, King George Island (Isla 25 de Mayo), South Shetlands, Antarctica, show a high density and richness of macrobenthic species, particularly ascidians. In other areas, ascidians have been reported to play the role of ecosystem engineers, as they support a significant number of epibionts, increasing benthic diversity. In this study, a total of 21 sessile macro-epibiotic taxa present on the ascidian species Corella antarctica Sluiter, 1905, Cnemidocarpa verrucosa (Lesson, 1830) and Molgula pedunculata Herdman, 1881 were identified, with Bryozoa being the most diverse. There were differences between the three ascidian species in terms of richness, percent cover and diversity of sessile macro-epibionts. The morphological characteristics of the tunic surface, the available area for colonization (and its relation with the age of the basibiont individuals) and the pH of the ascidian tunic seem to explain the observed differences. Recent environmental changes in the study area (increase of suspended particulate matter caused by glaciers retreat) have been related to observed shifts in the benthic community structure, negatively affecting the abundance and distribution of the studied ascidian species. Considering the diversity of sessile macro-epibionts found on these species, the impact of environmental shifts may be greater than that estimated so far. Keywords: Sessile macro-epibiont; ascidian; Antarctica; ecosystem- engineer.
-
The Amundsen Sea has been described as one of the most productive and dynamic pelagic systems in Antarctica and is one of the least studied. Based on samples from 15 stations in the Amundsen Sea, we describe for the first time the composition of the tintinnid ciliate assemblage of the microzooplankton. We compared the species compositions of coastal polynya sites, where the phytoplankton communities are dominated by Phaeocystis, to those of the offshore deep water sites, which are dominated by diatoms. We found a total of 15 species. Polynya sites were dominated by a few species of tintinnids, mostly those endemic to the Southern Ocean. In contrast, the deep-water sites contained many widespread tintinnid species, which are known from a wide variety of systems as well as other areas of the Southern Ocean. We examined polymorphism known to characterize the Antarctic tintinnid species Cymatocylis affinis/convallaria and Codonellopsis gaussi. We found that the types or forms found appeared unrelated to the type of microplankton community, defined by the identity of the dominant phytoplankton taxa. However, the number of different morphotypes found at a site appeared related to the overall concentration of the species, suggesting that different morphologies, previously considered distinct species, may simply be developmental stages. Keywords: Zooplankton; microzooplankton; polynya; protists; Phaeocystis; diatoms.
-
Antarctica is a highly interesting region for ecologists because of its extreme climatic conditions and the uniqueness of its species. In this article, we describe the trends in Antarctic ecological research participation by Latin American countries. In a survey of articles indexed by the ISI Web of Science, we searched under the categories ‘‘Ecology,’’ ‘‘Biodiversity Conservation’’ and ‘‘Evolutionary Biology’’ and found a total of 254 research articles published by Latin American countries. We classified these articles according to the country of affiliation, kingdom of the study species, level of biological organization and environment. Our main finding is that there is a steady increase in the relative contribution of Latin American countries to Antarctic ecological research. Within each category, we found that marine studies are more common than terrestrial studies. Between the different kingdoms, most studies focus on animals and most studies use a community approach. The leading countries in terms of productivity were Argentina, Chile and Brazil, with Argentina showing the highest rate of increase. Keywords: Antarctica; Argentina; Brazil; Chile; research trends; scientific productivity.
Explore
Topic
- økologi
- alger (3)
- Antarktis (16)
- Antarktistraktaten (1)
- avfallshåndtering (1)
- bakterier (1)
- batymetri (1)
- bentiske organismer (2)
- bentos (1)
- biodiversitet (12)
- biogeografi (1)
- biogeokjemi (2)
- biokjemi (1)
- biologging (1)
- biologi (5)
- biomasse (2)
- biosfære (1)
- biosikkerhet (1)
- bokanmeldelser (1)
- botanikk (1)
- Bouvetøya (3)
- bryozoa (2)
- cruiseturisme (1)
- datainnsamling (1)
- diatomeer (1)
- Dronning Maud Land (13)
- dyreplankton (1)
- ekkolodd (1)
- entomologi (3)
- fauna (1)
- ferskvann (1)
- fisker (2)
- fjærmygg (1)
- flora (1)
- fôring (1)
- forskning (1)
- forskningsstasjoner (1)
- forurensning (5)
- forvaltning (2)
- fotosyntese (1)
- fugler (10)
- fytoplankton (2)
- fytososiologi (1)
- genetisk analyse (1)
- geolokalisering (1)
- global oppvarming (1)
- havbunnen (1)
- havis (4)
- hoppekreps (1)
- innsjø (2)
- internasjonal (1)
- isberg (1)
- isfjell (1)
- karbondioksid (1)
- kartlegging (1)
- kjemisk (1)
- kjemiske analyser (1)
- klimaendringer (8)
- kontinentalsokkel (1)
- krill (3)
- kryptogamer (1)
- kuldetoleranse (2)
- landfast is (1)
- lav (2)
- leddyr (2)
- makrovirvelløse dyr (1)
- marin biologi (15)
- marinbiologi (2)
- marine økosystemer (1)
- menneskelig påvirkning (1)
- meteorologi (1)
- midder (1)
- migrasjon (1)
- mikrober (1)
- mikroorganismer (1)
- miljø (3)
- miljøendringer (2)
- miljøgifter (1)
- miljøpåvirkning (1)
- miljøvern (2)
- miter (1)
- morfologi (1)
- moser (2)
- NARE 1989/90 (1)
- NARE 1991/92 (1)
- NARE 2000/01 (2)
- nesledyr (1)
- næring (1)
- observasjoner (2)
- økofysiologi (2)
- økosystem (1)
- økosystemer (6)
- ornitologi (17)
- oseanografi (2)
- overvåking (1)
- paleolimnologi (1)
- pelsseler (1)
- petreller (9)
- pingviner (3)
- plankton (4)
- planter (2)
- polarområdene (4)
- politikk (1)
- protoktister (1)
- reproduksjon (2)
- satellite bilder (1)
- satellittelemetri (1)
- satellittsendere (1)
- sedimenter (2)
- sekkdyr (1)
- seler (2)
- sjøfugler (5)
- sjøis (2)
- sjøvann (1)
- Sørishavet (23)
- stabile isotoper (1)
- taksonomi (1)
- telemetri (1)
- turisme (1)
- virvelløse dyr (1)
- vitenskap (1)
- Weddellhavet (4)
- zoologi (18)
- zooplankton (2)
Resource type
Publication year
-
Between 1900 and 1999
(18)
-
Between 1970 and 1979
(1)
- 1972 (1)
- Between 1980 and 1989 (3)
- Between 1990 and 1999 (14)
-
Between 1970 and 1979
(1)
- Between 2000 and 2025 (33)