Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 5 resources
-
Reconstructing the response of present-day ice sheets to past global climate change is important for constraining and refining the numerical models which forecast future contributions of these ice sheets to sea-level change. Mapping landforms is an essential step in reconstructing glacial histories. Here we present a new map of glacial landforms and deposits on nunataks in western Dronning Maud Land, Antarctica. Nunataks are mountains or ridges that currently protrude through the ice sheet and may provide evidence that they have been wholly or partly covered by ice, thus indicating a formerly more extensive (thicker) ice sheet. The map was produced through a combination of mapping from Worldview satellite imagery and ground validation. The sub-metre spatial resolution of the satellite imagery enabled mapping with unprecedented detail. Ten landform categories have been mapped, and the landform distributions provide evidence constraining spatial patterns of a previously thicker ice sheet.
-
The paleo-topography of East Antarctica is highly relevant for the development of the East Antarctic ice-sheet. It is likely that the 1500 km long, coast-parallel Dronning Maud Land Mountains have resulted in a significant amount of precipitation prior to the initiation of the 34 Ma glaciation history of East Antarctica. Due to this, the paleo-topography should be used as an important input parameter for the glaciation history. The amount of quantitative measurements for the exhumation history of Antarctica is very limited as 98% of the continent is covered by ice. However, since the onset of thermochronological studies in the Dronning Maud Land Mountains in 1992, the area has been a subject of several thermochronological studies. The first thermochronological studies from Heimefrontfjella and Mannefjellknausane recorded a Jurassic thermal event associated with the Jurassic flood basalts related to the Karoo mantle plume and the rifting between East Antarctica and East Africa. Thermochronological data from Heimefrontfjella and Mannefjellknausane published by Jacobs and Lisker (1999) indicated that the Mesoproterozoic basement and the Permian sandstones were covered by 2000 meters of Jurassic flood basalt. In the Mühlig-Hofmann Mountains and the Gjelsvikfjella to the E, no significant Jurassic thermal event have been recorded. However, a combined titanite and apatite study by Emmel, et al. (2009) did not record any significant Jurassic thermal event in the Gjelsvikfjella and Mühlig-Hofmann Mountains. This has been used as a constraint for the lateral extent of the flood basalts. Also, the thermochronological analyses presented in Jacobs and Lisker (1999) indicated that the AFT ages get progressively older towards the SE. Based on these analyses; paleo-isotherms dipping towards the SE were suggested. In addition to the already published data, new, unpublished AHe data from a transect of the northern part of Jutulstraumen show relatively young ages at the rift flanks (~50 Ma) and progressively older ages further away from the rift flanks, indicating significant Cenozoic erosion (Ksienzyk et al., unpublished data). This is the basis for presently ongoing thermochronological studies.
-
The geographic extent of cooling associated with the Antarctic Cold Reversal is unclear. Dating of glacial moraines in New Zealand suggests that the cooling extended into the southern mid-latitudes, possibly as a result of the northward migration of the southern subtropical front.
-
This chapter contains sections titled: Introduction Methods Glaciation History and the Raised Marine Shorelines Mid-Holocene Glacial Readvances The Holocene Climatic Optimum Neoglaciation and the Little Ice Age Discussion and Conclusions
-
The Holocene glacial and climatic development in Antarctica differed considerably from that in the Northern Hemisphere. Initial deglaciation of inner shelf and adjacent land areas in Antarctica dates back to between 10-8 Kya, when most Northern Hemisphere ice sheets had already disappeared or diminished considerably. The continued deglaciation of currently ice-free land in Antarctica occurred gradually between ca. 8-5 Kya. A large southern portion of the marine-based Ross Ice Sheet disintegrated during this late deglaciation phase. Some currently ice-free areas were deglaciated as late as 3 Kya. Between 8-5 Kya, global glacio-eustatically driven sea level rose by 10-17m, with 4-8 m of this increase occurring after 7 Kya. Since the Northern Hemisphere ice sheets had practically disappeared by 8-7 Kya, we suggest that Antarctic deglaciation caused a considerable part of the global sea level rise between 8-7 Kya, and most of it between 7-5 Kya. The global mid-Holocene sea level high stand, broadly dated to between 8-4 Kya, and the Littorina-Tapes transgressions in Scandinavia and simultaneous transgressions recorded from sites e.g. in Svalbard and Greenland, dated to 7-5 Kya, probably reflect input of meltwater from the Antarctic deglaciation.
Explore
Topic
- paleoglasiologi
- Antarktis (3)
- deglasiasjon (1)
- Dronning Maud Land (2)
- geologi (1)
- geomorfologi (1)
- geovitenskap (1)
- glasiologi (2)
- havnivåstigning (1)
- holocene (1)
- innlandsis (2)
- klimaendringer (1)
- kryosfæren (1)
- nunataker (1)
- paleoklimatologi (1)
- polarområdene (1)
- sedimentologi (1)
- termokronologi (1)
Resource type
- Book Section (1)
- Conference Paper (1)
- Journal Article (3)
Publication year
-
Between 1900 and 1999
(1)
-
Between 1990 and 1999
(1)
- 1999 (1)
-
Between 1990 and 1999
(1)
-
Between 2000 and 2025
(4)
-
Between 2000 and 2009
(1)
- 2003 (1)
- Between 2010 and 2019 (2)
-
Between 2020 and 2025
(1)
- 2020 (1)
-
Between 2000 and 2009
(1)