Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Your search

Online resource

Results 150 resources

  • The global overturning circulation (GOC) is the largest scale component of the ocean circulation, associated with a global redistribution of key tracers such as heat and carbon. The GOC generates decadal to millennial climate variability, and will determine much of the long-term response to anthropogenic climate perturbations. This review aims at providing an overview of the main controls of the GOC. By controls, we mean processes affecting the overturning structure and variability. We distinguish three main controls: mechanical mixing, convection, and wind pumping. Geography provides an additional control on geological timescales. An important emphasis of this review is to present how the different controls interact with each other to produce an overturning flow, making this review relevant to the study of past, present and future climates as well as to exoplanets’ oceans.

  • In recent years, the Antarctic sea ice has experienced major changes, which are neither well understood nor adequately reproduced by Earth system models. To support model development with an aim to improve Antarctic sea ice and upper-ocean predictions, the impacts of updating the sea ice model and the atmospheric forcing are investigated. In the new MetROMS-UHel-v1.0 (henceforth MetROMS-UHel) ocean–sea ice model, the sea ice component has been updated from CICE5 to CICE6, and the forcing has been updated from ERA-Interim (ERAI) to ERA5 reanalyses. The two versions of MetROMS evaluated in this study use a version of the regional ROMS ocean model including ice shelf cavities. We find that the update of CICE (Community Ice CodE) and ERA reduced the negative bias of the sea ice area in summer. However, the sea ice volume decreases after the CICE update but increases when the atmospheric forcing is updated. As a net result after both updates, the modelled sea ice becomes thinner and more deformed, particularly near the coast. The ROMS ocean model usually yielded a deeper ocean mixed layer compared to observations. Using ERA5, the situation was slightly improved. The update from CICE5 to CICE6 resulted in a fresher coastal ocean due to a smaller salt flux from sea ice to the ocean. In the ice shelf cavities, the modelled melt rates are generally underestimated compared with observations, with the largest underestimation coming from the ice shelves in the too cold Amundsen and Bellingshausen seas as well as from the Australian sector in East Antarctica. These identified sea ice and oceanic changes vary seasonally and regionally. By determining sea ice and oceanic changes after the model and forcing updates and evaluating them against observations, this study informs modellers on improvements and aspects requiring attention with potential model adjustments.

  • This paper explores the research, making, and performance of Sastrugi: Sounds of Antarctic Sea Ice. Combining the techniques of sonification, field recording, and musique concrète, Sastrugi orchestrates multisensory world building where immersive soundscapes, data-driven violin composition, and expansive visuals narrate the poignant tale of vanishing sea ice in the Antarctic and Southern Ocean. In the face of a record-breaking year for Antarctic sea ice in 2023, this project emerged as a vital testament to the Earth’s changing climate and highlights the power of creative approaches for engaging audiences with science and vast amounts of data.

  • Plastic particles are present in biotic and abiotic matrices; hence, plastic pollution is a global issue involving terrestrial and marine fauna and poses a threat to humans. Ocean circulation is a crucial vector of microplastics worldwide. Plastic pollution is among the significant threats to the ocean ecosystem. Studies and papers on plastic pollution in the oceans worldwide have been reported. However, the distribution, characterization, and abundance of micro- and nano plastics in the global ocean still need to be carefully investigated. Once plastics are present in the environment, they denature, degrade, and are more prone to fragmentation. It is well established that large plastic objects and macroplastics fragment into mesoplastics and large microplastics through photodegradation and weathering. Hence microplastics easily break up into fragments <100 µm (small microplastics, SMPs) or even into sub-micrometric particles, the nanoplastics. The small size of these SMPs and nanoplastics allows them to be ingested by different organisms according to their mouthparts’ size. Besides, this fragmentation will enable additives and plasticizers to be released into the environment, where they may pose a threat to biota throughout the trophic web in various ecosystems, e.g., from oceans and soils to glaciers. Micro- and nanoplastics (MNPs) can be transported over long distances, together with the other airborne particles. As a result of long-range transport and short-range transport, airborne MNPs can be carried from worldwide to mountain glaciers; from mid-latitudes, they can reach the very high and very low latitudes, i.e., the Arctic and Antarctica. Due to global climate change, warm ocean streams heavily affect the sea circulation in polar areas, carrying regulated and emerging pollutants, microplastics being among them. In this scenario, polar environments may be significantly enriched by MNPs carried by warmer ocean currents intruding into the polar oceans and those in atmospheric aerosol. MNPs may threaten the sea ice formation and enhance the melting of glaciers. The melting and disappearance of glaciers and the intrusion of warm currents into polar areas are also compounded by the thawing of permafrost, which can release pollutants, including MNPs. This Research Topic aims to study the interconnected pathways of MNPs that are paramount to understanding the global microplastic cycle and how climate change alters polar environments and the rest of the world. Furthermore, we aim to identify bioindicators in marine species, populations, and ecosystems, while acknowledging the interconnectedness of freshwater, terrestrial and atmospheric environments to the polar environment. Research on world glaciers will provide a comprehensive evaluation of the impacts of plastic pollution on the marine polar environment and biota, including impacts on humans.

  • Over the last decade, the Southern Ocean has experienced episodes of severe sea ice area decline. Abrupt events of sea ice loss are challenging to predict, in part due to incomplete understanding of processes occurring at the scale of individual ice floes. Here, we use high-resolution altimetry (ICESat-2) to quantify the seasonal life cycle of floes in the perennial sea ice pack of the Weddell Sea. The evolution of the floe chord distribution (FCD) shows an increase in the proportion of smaller floes between November and February, which coincides with the asymmetric melt–freeze cycle of the pack. The freeboard ice thickness distribution (fITD) suggests mirrored seasonality between the western and southern sections of the Weddell Sea ice cover, with an increasing proportion of thicker floes between October and March in the south and the opposite in the west. Throughout the seasonal cycle, there is a positive correlation between the mean chord length of floes and their average freeboard thickness. Composited floe profiles reveal that smaller floes are more vertically round than larger floes and that the mean roundness of floes increases during the melt season. These results show that regional differences in ice concentration and type at larger scales occur in conjunction with different behaviors at the small scale. We therefore suggest that floe-derived metrics obtained from altimetry could provide useful diagnostics for floe-aware models and improve our understanding of sea ice processes across scales.

  • Ice-sheet mass loss is one of the clearest manifestations of climate change, with Antarctica discharging mass into the ocean via melting or through calving. The latter produces icebergs that can modify ocean water properties, often at great distances from source. This affects upper-ocean physics and primary productivity, with implications for atmospheric carbon drawdown. A detailed understanding of iceberg modification of ocean waters has hitherto been hindered by a lack of proximal measurements. Here unique measurements of a giant iceberg from an underwater glider enable quantification of meltwater effects on the physical and biological processes in the upper layers of the Southern Ocean, a region disproportionately important for global heat and carbon sequestration. Iceberg basal melting erodes seasonally produced winter water layer stratification, normally forming a strong potential energy barrier to vertical exchange of surface and deep waters, while freshwater run-off increases and shoals near-surface stratification. Nutrient-rich deeper waters, incorporating meltwater loaded with terrigenous material, are ventilated to below this stratification maxima, providing a potential mechanism for alleviating critical phytoplankton-limiting components. Regional historical hydrographic data demonstrate similar stratification changes during the passage of another large iceberg, suggesting that they may be an important pathway of aseasonal winter water modification.

  • Understanding population connectivity in the marine realm is crucial for conserving biodiversity, managing fisheries, and predicting species responses to environmental change. This is particularly important in Antarctic waters, where unique evolutionary histories and extreme conditions shape marine biodiversity. The longfin icedevil Aethotaxis mitopteryx is an elusive notothenioid fish endemic to Antarctic waters. To explore population connectivity in A. mitopteryx, we used RAD-seq to investigate the genetic differentiation of two populations, one from the Eastern Weddell Sea and the other from the Eastern Antarctic Peninsula, two regions of ecological relevance greatly impacted by climate change. Despite spatial separation, analyses revealed no significant genetic differentiation between the two populations, suggesting extensive gene flow. A pronounced genetic distinction was, however, observed between males and females. This differentiation was largely localized to a specific chromosome, implying a genetic sex determination system with males being the heterogametic sex. These findings contribute novel insights into the genetic structure of A. mitopteryx populations and expand our understanding of genetic mechanisms in Antarctic fish. This study provides a foundation for further investigations into the evolutionary and ecological implications of sex chromosome differentiation in extreme environments.

  • The Antarctic Circumpolar Current (ACC) is the world’s strongest ocean current and plays a disproportionate role in the climate system due to its role as a conduit for major ocean basins. This current system is linked to the ocean’s vertical overturning circulation, and is thus pivotal to the uptake of heat and CO2 in the ocean. The strength of the ACC has varied substantially across warm and cold climates in Earth’s past, but the exact dynamical drivers of this change remain elusive. This is in part because ocean models have historically been unable to adequately resolve the small-scale processes that control current strength. Here, we assess a global ocean model simulation which resolves such processes to diagnose the impact of changing thermal, haline and wind conditions on the strength of the ACC. Our results show that, by 2050, the strength of the ACC declines by ∼20% for a high-emissions scenario. This decline is driven by meltwater from ice shelves around Antarctica, which is exported to lower latitudes via the Antarctic Intermediate Water. This process weakens the zonal density stratification historically supported by surface temperature gradients, resulting in a slowdown of sub-surface zonal currents. Such a decline in transport, if realised, would have major implications on the global ocean circulation.

  • Massive injection of 13C depleted carbon to the ocean and atmosphere coincided with major environmental upheaval multiple times in the geological record. For several events, the source of carbon has been attributed to explosive venting of gas produced when magmatic sills intruded organic-rich sediment. The concept mostly derives from studies of a few ancient sedimentary basins with numerous hydrothermal vent complexes (HTVCs) where craters appear to have formed across large areas of the seafloor at the same time, but good examples remain rare in strata younger than the Early Eocene. We present geophysical data documenting at least 150 large (km-scale) craters on the modern seafloor across ∼148,000 km2 of Scan Basin in the southern Scotia Sea, a remote region offshore Antarctica. Seismic and bathymetric information reveals the craters relate to vertical fluid pipes extending above dome-shaped forced folds and saucer-shaped igneous sills. Presumably, magmatic intrusions deform overlying sediment and produce thermogenic gas, where buoyant hydrothermal fluids migrate upwards from sill flanks through V-shaped gas chimneys to the seafloor. Fluid expulsion, driven by excess pore pressure, enhances vertical conduits and creates collapse structures on the seafloor. Age estimates for sill emplacement and crater formation come from correlations of seismic reflectors with bore hole data collected on IODP Expedition 382. Sills intruded into sediment at least two times, first about 12–13 Ma (Middle Miocene), which occurred with deep intrusions of stacked composite sills, and once about 0.9 Ma and associated with volcanism along Discovery Bank, which may have reactivated previous fluid venting. Crater reactivation has occurred since 0.9 Ma, although probably episodically. Importantly, at present-day, numerous craters related to sills and fluid pipes populate the seafloor above a young sedimentary basin, and the ocean and atmosphere are receiving massive quantities of 13C depleted carbon. The two phenomena are unrelated but, with changes in global climate and sedimentation, the craters could be filled simultaneously and give an impression in the rock record of rapid and coeval formation coincident with carbon emission. Interpretations of ancient HTVCs and their significance to global carbon cycling needs revision with consideration of modern seafloor regions with HTVCs, notably Scan Basin.

  • Antarctic krill (Euphausia superba) are integral to Southern Ocean pelagic ecosystems. Winters with extensive sea ice have been linked to high post-larval krill recruitment the following spring, suggesting that sea ice plays a critical role in larval overwinter survival. As the ocean warms and sea ice declines under climate change, understanding the mechanisms linking sea ice and krill recruitment is increasingly urgent. To address this, we developed a qualitative network model (QNM) that integrates evidence-based and hypothesized interactions to explore larval overwinter survival and growth under future climate scenarios in the southwest Atlantic sector. Our model highlights habitat-specific impacts, with substantial declines predicted for the North Antarctic Peninsula continental shelf due to reduced autumn primary productivity and warming. In contrast, survival may improve in open-ocean habitats under cooler scenarios that enhance sea-ice-associated processes, such as food availability and refuge. The inclusion of hypothesized mechanisms, such as sea-ice terraces providing refuge from predation, strengthened these conclusions and highlighted critical uncertainties, including the influence of glacial melt on food web dynamics. These findings demonstrate the value of QNMs in complementing quantitative approaches, offering a framework for identifying critical mechanisms, addressing knowledge gaps, and guiding future field and laboratory studies to improve predictions of krill responses to climate change.

  • Glaciers are indicators of ongoing anthropogenic climate change1. Their melting leads to increased local geohazards2, and impacts marine3 and terrestrial4,5 ecosystems, regional freshwater resources6, and both global water and energy cycles7,8. Together with the Greenland and Antarctic ice sheets, glaciers are essential drivers of present9,10 and future11–13 sea-level rise. Previous assessments of global glacier mass changes have been hampered by spatial and temporal limitations and the heterogeneity of existing data series14–16. Here we show in an intercomparison exercise that glaciers worldwide lost 273 ± 16 gigatonnes in mass annually from 2000 to 2023, with an increase of 36 ± 10% from the first (2000–2011) to the second (2012–2023) half of the period. Since 2000, glaciers have lost between 2% and 39% of their ice regionally and about 5% globally. Glacier mass loss is about 18% larger than the loss from the Greenland Ice Sheet and more than twice that from the Antarctic Ice Sheet17. Our results arise from a scientific community effort to collect, homogenize, combine and analyse glacier mass changes from in situ and remote-sensing observations. Although our estimates are in agreement with findings from previous assessments14–16 at a global scale, we found some large regional deviations owing to systematic differences among observation methods. Our results provide a refined baseline for better understanding observational differences and for calibrating model ensembles12,16,18, which will help to narrow projection uncertainty for the twenty-first century11,12,18.

  • The polar regions are increasingly at the center of attention as the hot spots of climate crisis as well as tourism development. The recent IPCC reports highlight several climate change risks for the rather carbon-intensive and weather-based/dependent polar tourism industry in the Arctic and the Antarctic. This study presents the scholarly state-of-knowledge on tourism and climate change in the polar regions with a literature survey extending beyond the Anglophone publications. As a supporting tool, we provide a live web GIS application based on the geographical coverages of the publications and filterable by various spatial, thematic and bibliographical attributes. The final list of 137 publications indicates that, regionally, the Arctic has been covered more than the Antarctic, whilst an uneven distribution within the Arctic also exists. In terms of the climate change risks themes, climate risk research, i.e. impact and adaptation studies, strongly outnumbers the carbon risk studies especially in the Arctic context, and, despite a balance between the two main risk themes, climate risk research in the Antarctic proves itself outdated. Accordingly, the review ends with a research agenda based on these spatial and thematic gaps and their detailed breakdowns.

  • During the last few decades, several sectors in Antarctica have transitioned from glacial mass balance equilibrium to mass loss. In order to determine if recent trends exceed the scale of natural variability, long-term observations are vital. Here we explore the earliest, large-scale, aerial image archive of Antarctica to provide a unique record of 21 outlet glaciers along the coastline of East Antarctica since the 1930s. In Lützow-Holm Bay, our results reveal constant ice surface elevations since the 1930s, and indications of a weakening of local land-fast sea-ice conditions. Along the coastline of Kemp and Mac Robertson, and Ingrid Christensen Coast, we observe a long-term moderate thickening of the glaciers since 1937 and 1960 with periodic thinning and decadal variability. In all regions, the long-term changes in ice thickness correspond with the trends in snowfall since 1940. Our results demonstrate that the stability and growth in ice elevations observed in terrestrial basins over the past few decades are part of a trend spanning at least a century, and highlight the importance of understanding long-term changes when interpreting current dynamics.

  • Abstract In this study, the subseasonal Antarctic sea ice edge prediction skill of the Copernicus Climate Change Service (C3S) and Subseasonal to Seasonal (S2S) projects was evaluated by a probabilistic metric, the spatial probability score (SPS). Both projects provide subseasonal to seasonal scale forecasts of multiple coupled dynamical systems. We found that predictions by individual dynamical systems remain skillful for up to 38 days (i.e., the ECMWF system). Regionally, dynamical systems are better at predicting the sea ice edge in the West Antarctic than in the East Antarctic. However, the seasonal variations of the prediction skill are partly system-dependent as some systems have a freezing-season bias, some had a melting-season bias, and some had a season-independent bias. Further analysis reveals that the model initialization is the crucial prerequisite for skillful subseasonal sea ice prediction. For those systems with the most realistic initialization, the model physics dictates the propagation of initialization errors and, consequently, the temporal length of predictive skill. Additionally, we found that the SPS-characterized prediction skill could be improved by increasing the ensemble size to gain a more realistic ensemble spread. Based on the C3S systems, we constructed a multi-model forecast from the above principles. This forecast consistently demonstrated a superior prediction skill compared to individual dynamical systems or statistical observation-based benchmarks. In summary, our results elucidate the most important factors (i.e., the model initialization and the model physics) affecting the currently available subseasonal Antarctic sea ice prediction systems and highlighting the opportunities to improve them significantly.

  • The variability of the Antarctic and Greenland ice sheets occurs on various timescales and is important for projections of sea level rise; however, there are substantial uncertainties concerning future ice-sheet mass changes. In this Review, we explore the degree to which short-term fluctuations and extreme glaciological events reflect the ice sheets’ long-term evolution and response to ongoing climate change. Short-term (decadal or shorter) variations in atmospheric or oceanic conditions can trigger amplifying feedbacks that increase the sensitivity of ice sheets to climate change. For example, variability in ocean-induced and atmosphere-induced melting can trigger ice thinning, retreat and/or collapse of ice shelves, grounding-line retreat, and ice flow acceleration. The Antarctic Ice Sheet is especially prone to increased melting and ice sheet collapse from warm ocean currents, which could be accentuated with increased climate variability. In Greenland both high and low melt anomalies have been observed since 2012, highlighting the influence of increased interannual climate variability on extreme glaciological events and ice sheet evolution. Failing to adequately account for such variability can result in biased projections of multi-decadal ice mass loss. Therefore, future research should aim to improve climate and ocean observations and models, and develop sophisticated ice sheet models that are directly constrained by observational records and can capture ice dynamical changes across various timescales.

  • The polar regions are facing a wide range of compounding challenges, from climate change to increased human activity. Infrastructure, rescue services, and disaster response capabilities are limited in these remote environments. Relevant and usable weather, water, ice, and climate (WWIC) information is vital for safety, activity success, adaptation, and environmental protection. This has been a key focus for the World Meteorological Organization’s (WMO) Polar Prediction Project (PPP), and in particular its “Societal and Economic Research and Applications” (PPP-SERA) Task Team, which together over a decade have sought to understand polar WWIC information use in relation to operational needs, constraints, and decision contexts to inform the development of relevant services. To understand research progress and gaps on WWIC information use during the PPP (2013–23), we undertook a systematic bibliometric review of aligned scholarly peer-reviewed journal articles (n = 43), examining collaborations, topics, methods, and regional differences. Themes to emerge included activity and context, human factors, information needs, situational awareness, experience, local and Indigenous knowledge, and sharing of information. We observed an uneven representation of disciplinary backgrounds, geographic locations, research topics, and sectoral foci. Our review signifies an overall lack of Antarctic WWIC services research and a dominant focus on Arctic sea ice operations and risks. We noted with concern a mismatch between user needs and services provided. Our findings can help to improve WWIC services’ dissemination, communication effectiveness, and actionable knowledge provision for users and guide future research as the critical need for salient weather services across the polar regions remains beyond the PPP. Significance Statement Every day, people in the Arctic and Antarctic use weather, water, ice, and climate information to plan and carry out outdoor activities and operations in a safe way. Despite advances in numerical weather prediction, technology, and product development, barriers to accessing and effectively communicating high-quality usable observations, forecasts, and actionable knowledge remain. Poorer services, prediction accuracy, and interpretation are exacerbated by a lack of integrated social science research on relevant topics and a mismatch between the services provided and user needs. As a result, continued user engagement, research focusing on information use, risk communication, decision-making processes, and the application of science for services remain highly relevant to reducing risks and improving safety for people living, visiting, and working in the polar regions.

  • The ongoing global climate crisis increases temperatures in polar regions faster and with greater magnitude than elsewhere. The decline of Arctic sea ice opens up new passages, eventually leading to higher anthropogenic activities such as shipping, fishing, and mining. Climate change and anthropogenic activities will increase contaminant transport from temperate to Arctic regions. The shipping industry uses copper as an antifouling coating. Copper is an essential element but becomes toxic at excess concentrations, and its use may inadvertently affect non-target organisms such as copepods. Copper affects copepods by lowering reproductive output, prolonging developmental time, and causing increased mortality. As data on copper sensitivity of polar copepods at low temperatures are rare, we conducted onboard survival experiments with the Arctic region’s most common copepod species (Calanus finmarchicus, C. glacialis, C. hyperboreus). Acute survival tests were done for up to 8 days on individuals in 70 ml bottles at 1 °C with nominal copper concentrations ranging from 3 to 480 μg L−1. We used a reduced General Unified Threshold model for Survival (GUTS) to analyse the data, and placed our results in the context of the few published copper sensitivity data of the Antarctic and temperate copepod species at low temperatures. The sensitivity of Cu exposure was similar between the three Calanus species. However, a model comparison suggests that the tested C. glacialis population is less sensitive than the other two species in our experiments. Compared to published data, the three Arctic species appear slightly less sensitive to copper compared to their Antarctic counterparts but more compared to their temperate ones. Our literature search revealed only a few available studies on the copper sensitivity of polar copepods. In the future, this species group will be exposed to more pollutants, which warrants more studies to predict potential risks, especially given possible interactions with environmental factors.

  • Warmer ocean conditions could impact future ice loss from Antarctica due to their ability to thin and reduce the buttressing of laterally confined ice shelves. Previous studies highlight the potential for a cold to warm ocean regime shift within the sub-shelf cavities of the two largest Antarctic ice shelves—the Filchner–Ronne and Ross. However, how this impacts upstream ice flow and mass loss has not been quantified. Here using an ice sheet model and an ensemble of ocean-circulation model sub-shelf melt rates, we show that transition to a warm state in those ice shelf cavities leads to a destabilization and irreversible grounding line retreat in some locations. Once this ocean shift takes place, ice loss from the Filchner–Ronne and Ross catchments is greatly accelerated, and conditions begin to resemble those of the present-day Amundsen Sea sector—responsible for most current observed Antarctic ice loss—where this thermal shift has already occurred.

  • The absorption of atmospheric carbon dioxide (CO2) in the Southern Ocean represents a critical component of the global oceanic carbon budget. Previous assessments of air-sea carbon flux variations and long-term trends in polar regions during winter have faced limitations due to scarce field data and the lack of ocean color satellite imagery, causing uncertainties in estimating CO2 flux estimation. This study utilized the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation satellite to construct a continuous 16-year (2006?2021) time series of sea surface partial pressure of CO2 (pCO2) in the Southern Ocean. Our findings revealed that the polar region in South Ocean acts as a carbon sink in winter, with CO2 flux of ?30 TgC in high-latitude areas (South of 50°S). This work highlights the efficacy of active remote sensing for monitoring sea surface pCO2 and contributes insights into the dynamic carbonate systems of the Southern Ocean.

  • Future mass loss from the East Antarctic Ice Sheet represents a major uncertainty in projections of future sea level rise. Recent studies have highlighted the potential vulnerability of the East Antarctic Ice Sheet to atmospheric and oceanic changes, but long-term observations inside the ice shelf cavities are rare. Here, we present new insights from observations from three oceanic moorings below Fimbulisen Ice Shelf from 2009 to 2023. We examine the characteristics of intrusions of modified Warm Deep Water (mWDW) across a sill connecting the cavity to the open ocean and investigate seasonal variability of the circulation and water masses inside the cavity using an optimum multiparameter analysis. In autumn, the water below the 345 m deep central part of the ice shelf is composed of up to 30 % solar-heated, buoyant Antarctic Surface Water (ASW), separating colder Ice Shelf Water from the ice base and affecting the cavity circulation on seasonal timescales. At depth, the occurrence of mWDW is associated with the advection of cyclonic eddies across the sill into the cavity. These eddies reach up to the ice base. The warm intrusions are observed most often from January to March and from September to November, and traces of mWDW-derived meltwater close to the ice base imply an overturning of these warm intrusions inside the cavity. We suggest that this timing is set by both the offshore thermocline depth and the interactions of the Antarctic Slope Current with the ice shelf topography over the continental slope. Our findings provide a better understanding of the interplay between shallow inflows of ASW contributions and deep inflows of mWDW for basal melting at Fimbulisen Ice Shelf, with implications for the potential vulnerability of the ice shelf to climate change.

Last update from database: 12/1/25, 3:10 AM (UTC)

Explore

Topic

Online resource