Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.
Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.
Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.
Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.
Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.
Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.
Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.
Your search
Results 11 resources
-
Sea ice forms a barrier to the exchange of energy, gases, moisture and particles between the ocean and atmosphere around Antarctica. Ice temperature, salinity and the composition of ice crystals determine whether a particular slab of sea ice is habitable for microorganisms and permeable to exchanges between the ocean and atmosphere, allowing, for example, carbon dioxide (CO2) from the atmosphere to be absorbed or outgassed by the ocean. Spring sea ice can have high concentrations of algae and absorb atmospheric CO2. In the summer of 2016?2017 off East Antarctica, we found decayed and porous granular ice layers in the interior of the ice column, which showed high algal pigment concentrations. The maximum chlorophyll a observed in the interior of the ice column was 67.7 ?g/L in a 24% porous granular ice layer between 0.8 and 0.9 m depth in 1.7 m thick ice, compared to an overall mean sea-ice chlorophyll a (± one standard deviation) of 13.5 ± 21.8 ?g/L. We also found extensive surface melting, with instances of snow meltwater apparently percolating through the ice, as well as impermeable superimposed ice layers that had refrozen along with melt ponds on top of the ice. With future warming, the structures we describe here could occur earlier and/or become more persistent, meaning that sea ice would be more often characterized by patchy permeability and interior ice algal accumulations.
-
At any one time 130 000 icebergs are afloat in the Southern Ocean; 97% of these are too small to be registered in current satellite-based databases, yet the melting of these small icebergs provides a major input to the Southern Ocean. We use a unique set of visual size observations of 53 000 icebergs in the South Atlantic Ocean, the SCAR International Iceberg Database, to derive average iceberg dissolution rates. Fracture into two parts is the dominant dissolution process for tabular icebergs, with an average half-life of 30 days for icebergs <4 km length and 60 days for larger icebergs. Complete shatter producing many icebergs <1 km length is rare. A side attrition rate of 0.23 m d−1 combined with drift speed of 6 km d−1, or any proportional change in both numbers fits the observed changes in iceberg distribution. The largest injection into the Southern Ocean of fresh water and any iceberg-transported material takes place in a ~2.3 × 10⁶ km2 zone extending east-northeast from the Antarctic Peninsula to the Greenwich meridian. The iceberg contribution to salinities and temperatures, with maximum contribution north of the Weddell Sea, differs in some regions, from those indicated by tracking large icebergs.
-
In 1981, the Scientific Committee on Antarctic Research endorsed a program for ship-based collection of Antarctic iceberg data, to be coordinated by the Norwegian Polar Institute (NPI). From the austral summers 1982/1983 to 1997/1998, icebergs were recorded from most, and up to 2009/10 by fewer research vessels. The NPI database makes up 80% of the SCAR International Iceberg Database presented here, the remainder being Australian National Antarctic Research Expedition observations. The database contains positions of 374 142 icebergs resulting from 34 662 observations. Within these, 298 235 icebergs are classified into different size categories. The ship-based data are particularly useful because they include systematic observations of smaller icebergs not covered by current satellite-based datasets. Here, we assess regional and seasonal variations in iceberg density and total quantities, we identify drift patterns and exit zones from the continent, and we discuss iceberg dissolution rates and calving rates. There are significant differences in the extent of icebergs observed over the 30 plus years of observations, but much of these can be ascribed to differences in observation density and location. In the summer, Antarctic icebergs >10 m in length number ~130 000 of which 1000 are found north of the Southern Ocean boundary.
-
The dominant feature of large-scale mass transfer in the modern ocean is the Atlantic meridional overturning circulation (AMOC). The geometry and vigour of this circulation influences global climate on various timescales. Palaeoceanographic evidence suggests that during glacial periods of the past 1.5 million years the AMOC had markedly different features from today1; in the Atlantic basin, deep waters of Southern Ocean origin increased in volume while above them the core of the North Atlantic Deep Water (NADW) shoaled2. An absence of evidence on the origin of this phenomenon means that the sequence of events leading to global glacial conditions remains unclear. Here we present multi-proxy evidence showing that northward shifts in Antarctic iceberg melt in the Indian–Atlantic Southern Ocean (0–50° E) systematically preceded deep-water mass reorganizations by one to two thousand years during Pleistocene-era glaciations. With the aid of iceberg-trajectory model experiments, we demonstrate that such a shift in iceberg trajectories during glacial periods can result in a considerable redistribution of freshwater in the Southern Ocean. We suggest that this, in concert with increased sea-ice cover, enabled positive buoyancy anomalies to ‘escape’ into the upper limb of the AMOC, providing a teleconnection between surface Southern Ocean conditions and the formation of NADW. The magnitude and pacing of this mechanism evolved substantially across the mid-Pleistocene transition, and the coeval increase in magnitude of the ‘southern escape’ and deep circulation perturbations implicate this mechanism as a key feedback in the transition to the ‘100-kyr world’, in which glacial–interglacial cycles occur at roughly 100,000-year periods.
-
There is a paucity of information on the foraging ecology, especially individual use of sea-ice features and icebergs, over the non-breeding season in many seabird species. Using geolocators and stable isotopes, we defined the movements, distribution and diet of adult Antarctic petrels Thalassoica antarctica from the largest known breeding colony, the inland Svarthamaren, Antarctica. More specifically, we examined how sea-ice concentration and free-drifting icebergs affect the distribution of Antarctic petrels. After breeding, birds moved north to the marginal ice zone (MIZ) in the Weddell sector of the Southern Ocean, following its northward extension during freeze-up in April, and they wintered there in April–August. There, the birds stayed predominantly out of the water (60–80% of the time) suggesting they use icebergs as platforms to stand on and/or to rest. Feather δ15N values encompassed one full trophic level, indicating that birds fed on various proportions of crustaceans and fish/squid, most likely Antarctic krill Euphausia superba and the myctophid fish Electrona antarctica and/or the squid Psychroteuthis glacialis. Birds showed strong affinity for the open waters of the northern boundary of the MIZ, an important iceberg transit area, which offers roosting opportunities and rich prey fields. The strong association of Antarctic petrels with sea-ice cycle and icebergs suggests the species can serve, year-round, as a sentinel of environmental changes for this remote region.
-
An object-based method for automatic iceberg detection has been applied to Advanced Synthetic Aperture Radar images in the Amundsen Sea Embayment (ASE), Antarctica. The images were acquired between 1 January 2006 and 8 April 2012 under varying meteorological, oceanographic and sea-ice conditions. During this time period, the icebergs were counted (average 1370 ± 50) and their surface area was estimated (average 1537.5 km2). The average surface area was about 2.5 times larger than the annual calved area (620 km2), indicating that the average iceberg age in the ASE is about 2.5 years, which was confirmed by observed residence times based on drift tracks. Most of the ASE icebergs were less than 1500 m long, and almost 90% of them were smaller than 2 km2. The proportion of small- and medium-sized icebergs (84.4%) was significantly higher than in the open ocean, where large icebergs (>10 km2) account for nearly the whole iceberg surface area. The opposite was true for the freshly calved icebergs in the ASE. The data indicate that the creation of icebergs in the ASE is dominated by steady small- to medium-scale calving from ice shelves fringing the embayment. In addition, rare calving events of giant icebergs occur on a decadal timescale. There is also some import of icebergs from the Bellingshausen Sea further east along the coast, in particular after large calving events there.
-
Tabular iceberg calving and ice shelf retreat occurs after full-thickness fractures, known as rifts, propagate across an ice shelf. A quickly evolving rift signals a threat to the stability of Larsen C, the Antarctic Peninsula's largest ice shelf. Here we reveal the influence of ice shelf heterogeneity on the growth of this rift, with implications that challenge existing notions of ice shelf stability. Most of the rift extension has occurred in bursts after overcoming the resistance of suture zones that bind together neighboring glacier inflows. We model the stresses in the ice shelf to determine potential rift trajectories. Calving perturbations to ice flow will likely reach the grounding line. The stability of Larsen C may hinge on a single suture zone that stabilizes numerous upstream rifts. Elevated fracture toughness of suture zones may be the most important property that allows ice shelves to modulate Antarctica's contribution to sea level rise.
-
The heave, tilt, and strain responses of three Antarctic tabular icebergs to ocean waves were measured during a 1980–1981 cruise of HMS Endurance to the South Atlantic. The three icebergs, located near the South Sandwich and South Orkney islands, were instrumented with accelerometers, tiltmeters, and wire strainmeters, while a Waverider buoy was used to record the ocean wave field. The thickness of the icebergs was surveyed by a helicopter-borne radio echo sounder. The heave response occurred mainly at the swell period but with outbreaks of bobbing which lasted for a few cycles at a resonant period (about 40 s), which agreed well with the predictions of a numerical finite element model. The roll response occurred mainly at a long resonant period (40–50 s), which again agreed well with the model, but there was also a significant response at ocean wave periods (5–20 s), which exceeded predictions. The strain response had a component at very long periods, which is unexplained by theory, while the surface strain at ocean wave periods agreed with the simple analytical model of Goodman et al. (1980). Using this model it is possible to predict a wave height and period that will cause breakup of the icebergs, and we conclude that swell-induced breakup is likely to occur during major storms in the open southern ocean.
Explore
Topic
- isfjell
- Amundsenhavet (1)
- Antarktis (2)
- batymetri (1)
- biogeokjemi (1)
- biologi (1)
- brehylle (1)
- database (1)
- drivis (1)
- fjernmåling (1)
- geofysikk (2)
- geolokalisering (1)
- glasiologi (5)
- havbølger (1)
- havis (5)
- havnivåstigning (1)
- havstrømmer (1)
- hydrografi (1)
- hydrologi (1)
- iceberg calving (1)
- is (1)
- isberg (6)
- isbreer (1)
- isbrem (3)
- isdrift (1)
- isshelf (3)
- kalv (1)
- kalving (2)
- klimaendringer (1)
- miljøendringer (1)
- NARE 1984/85 (1)
- økologi (1)
- ornitologi (1)
- oseanografi (4)
- paleoklimatologi (1)
- paleoseanografi (1)
- petreller (1)
- sjøfugler (1)
- sjøis (4)
- Sør-Orknøyene (1)
- Sørishavet (10)
- vannmasser (2)
- Weddellhavet (3)
Resource type
- Book Section (2)
- Journal Article (9)