Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Your search

Topic
Online resource

Results 94 resources

  • A drifting wave-ice buoy (Medusa-766) was deployed at the Lützow-Holm Bay (LHB) marginal ice zone in Antarctica during the 63rd Japanese Antarctic Research Expedition to study the wave influence on the unstable LHB fast ice. Medusa-766 survived the Antarctic winter as it was located deep in the ice cover with the shortest distance to the ice-free Southern Ocean over 1,000?km; at this time, there was evidence of 8-cm-height wave signal at the buoy position. Using the the ECMWF?s reanalysis wave data, we show that the incoming waves were likely 4-m waves that were generated by an extratropical cyclone in the Southern Ocean. Wave-induced ice breakup potential for this event could extend hundreds of kilometres into the ice field. When Medusa-766 was in LHB in the summer months, it did not detect sizable wave energy despite the low sea ice concentration extent even during on-ice wave events. Understanding the wave attenuation characteristics is needed to elucidate the ocean wave effect to the unstable LHB fast ice. The success of Medusa-766 demonstrates the robustness of the general design and the high sensitivity of the sensor used, which is promising for future LHB wave?ice interaction research.

  • Microplastic (MP; plastic particles < 5 mm) pollution is pervasive in the marine environment, including remote polar environments. This study provides the first pan-Antarctic survey of MP pollution in Southern Ocean sea ice by analyzing sea ice cores from several diverse Antarctic regions. Abundance, chemical composition, and particle size data were obtained from 19 archived ice core samples. The cores were melted, filtered, and chemically analyzed using Fourier-transform infrared spectroscopy and 4,090 MP particles were identified. Nineteen polymer types were found across all samples, with an average concentration of 44.8 (± 50.9) particles·L-1. Abundance and composition varied with ice type and geographical location. Pack ice exhibited significantly higher particle concentrations than landfast ice, suggesting open ocean sources of pollution. Winter sea ice cores had significantly more MPs than spring and summer-drilled cores, suggesting ice formation processes play a role in particle incorporation. Smaller particles dominated across samples. Polyethylene (PE) and polypropylene (PP) were the most common polymers, mirroring those most identified across marine habitats. Higher average MP concentrations in developing sea ice during autumn and winter, contrasting lower levels observed in spring and summer, suggest turbulent conditions and faster growth rates are likely responsible for the increased incorporation of particles. Southern Ocean MP contamination likely stems from both local and distant sources. However, the circulation of deep waters and long-range transport likely contribute to the accumulation of MPs in regional gyres, coastlines, and their eventual incorporation into sea ice. Additionally, seasonal sea ice variations likely influence regional polymer compositions, reflecting the MP composition of the underlying waters.

  • Antarctic sea ice has exhibited significant variability over the satellite record, including a period of prolonged and gradual expansion, as well as a period of sudden decline. A number of mechanisms have been proposed to explain this variability, but how each mechanism manifests spatially and temporally remains poorly understood. Here, we use a statistical method called low-frequency component analysis to analyze the spatiotemporal structure of observed Antarctic sea ice concentration variability. The identified patterns reveal distinct modes of low-frequency sea ice variability. The leading mode, which accounts for the large-scale, gradual expansion of sea ice, is associated with the Interdecadal Pacific Oscillation and resembles the observed sea surface temperature trend pattern that climate models have trouble reproducing. The second mode is associated with the central Pacific El Niño–Southern Oscillation (ENSO) and the Southern Annular Mode and accounts for most of the sea ice variability in the Ross Sea. The third mode is associated with the eastern Pacific ENSO and Amundsen Sea Low and accounts for most of the pan-Antarctic sea ice variability and almost all of the sea ice variability in the Weddell Sea. The third mode is also related to periods of abrupt Antarctic sea ice decline that are associated with a weakening of the circumpolar westerlies, which favors surface warming through a shoaling of the ocean mixed layer and decreased northward Ekman heat transport. Broadly, these results suggest that climate model biases in long-term Antarctic sea ice and large-scale sea surface temperature trends are related to each other and that eastern Pacific ENSO variability is a key ingredient for abrupt Antarctic sea ice changes.

  • Abstract In this study, the subseasonal Antarctic sea ice edge prediction skill of the Copernicus Climate Change Service (C3S) and Subseasonal to Seasonal (S2S) projects was evaluated by a probabilistic metric, the spatial probability score (SPS). Both projects provide subseasonal to seasonal scale forecasts of multiple coupled dynamical systems. We found that predictions by individual dynamical systems remain skillful for up to 38 days (i.e., the ECMWF system). Regionally, dynamical systems are better at predicting the sea ice edge in the West Antarctic than in the East Antarctic. However, the seasonal variations of the prediction skill are partly system-dependent as some systems have a freezing-season bias, some had a melting-season bias, and some had a season-independent bias. Further analysis reveals that the model initialization is the crucial prerequisite for skillful subseasonal sea ice prediction. For those systems with the most realistic initialization, the model physics dictates the propagation of initialization errors and, consequently, the temporal length of predictive skill. Additionally, we found that the SPS-characterized prediction skill could be improved by increasing the ensemble size to gain a more realistic ensemble spread. Based on the C3S systems, we constructed a multi-model forecast from the above principles. This forecast consistently demonstrated a superior prediction skill compared to individual dynamical systems or statistical observation-based benchmarks. In summary, our results elucidate the most important factors (i.e., the model initialization and the model physics) affecting the currently available subseasonal Antarctic sea ice prediction systems and highlighting the opportunities to improve them significantly.

  • Accurate satellite measurements of the thickness of Antarctic sea ice are urgently needed but pose a particular challenge. The Antarctic data presented here were produced using a method to derive the sea ice thickness from 1.4 GHz brightness temperatures previously developed for the Arctic, with only modified auxiliary data. The ability to observe the thickness of thin sea ice using this method is limited to cold conditions, meaning it is only reasonable during the freezing period, typically March to October. The Soil Moisture and Ocean Salinity (SMOS) level-3 sea ice thickness product contains estimates of the sea ice thickness and its uncertainty up to a thickness of about 1 m. The sea ice thickness is provided as a daily average on a polar stereographic projection grid with a sample resolution of 12.5 km, while the SMOS brightness temperature data used have a footprint size of about 35–40 km in diameter. Data from SMOS have been available since 2010, and the mission's operation has been extended to continue until at least the end of 2025. Here we compare two versions of the SMOS Antarctic sea ice thickness product which are based on different level-1 input data (v3.2 based on SMOS L1C v620 and v3.3 based on SMOS L1C 724). A validation is performed to generate a first baseline reference for future improvements of the retrieval algorithm and synergies with other sensors. Sea ice thickness measurements to validate the SMOS product are particularly rare in Antarctica, especially during the winter season and for the valid range of thicknesses. From the available validation measurements, we selected datasets from the Weddell Sea that have varying degrees of representativeness: Helicopter-based EM Bird (HEM), Surface and Under-Ice Trawl (SUIT), and stationary Upward-Looking Sonars (ULS). While the helicopter can measure hundreds of kilometres, SUIT's use is limited to distances of a few kilometres and thus only captures a small fraction of an SMOS footprint. Compared to SMOS, the ULS are point measurements and multi-year time series are necessary to enable a statistically representative comparison. Only four of the ULS moorings have a temporal overlap with SMOS in the year 2010. Based on selected averaged HEM flights and monthly ULS climatologies, we find a small mean difference (bias) of less than 10 cm and a root mean square deviation of about 20 cm with a correlation coefficient R > 0.9 for the valid sea ice thickness range between 0 and about 1 m. The SMOS sea ice thickness showed an underestimate of about 40 cm with respect to the less representative SUIT validation data in the marginal ice zone. Compared with sea ice thickness outside the valid range, we find that SMOS strongly underestimates the real values, which underlines the need for combination with other sensors such as altimeters. In summary, the overall validity of the SMOS sea ice thickness for thin sea ice up to a thickness of about 1 m has been demonstrated through validation with multiple datasets. To ensure the quality of the SMOS product, an independent regional sea ice extent index was used for control. We found that the new version, v3.3, is slightly improved in terms of completeness, indicating fewer missing data. However, it is worth noting that the general characteristics of both datasets are very similar, also with the same limitations.

  • The existence of ice-edge phytoplankton blooms in the Southern Ocean is well described, yet direct observations of the mechanisms of phytoplankton bloom development following seasonal sea-ice melt remain scarce. This study constrains such responses using biological and biogeochemical datasets collected along a coastal-to-offshore transect that bisects the receding sea-ice zone in the Kong Håkon VII Hav (off the coast of Dronning Maud Land). We documented that the biogeochemical growing conditions for phytoplankton vary on a latitudinal gradient of sea-ice concentration, where increased sea-ice melting creates optimal conditions for growth with increased light availability and potentially increased iron supply. The zones of the study area with the least ice cover were associated with diatom dominance, the greatest chlorophyll a concentrations, net community production, and dissolved inorganic carbon drawdown, as well as lower sea surface fugacity of CO2. Together, these associations imply higher potential for an oceanic CO2 sink due, at least in part, to more advanced bloom phase and/or larger bloom magnitude stemming from a relatively longer period of light exposure, as compared to the more ice-covered zones in the study area. From stable oxygen isotope fractions, sea-ice meltwater fractions were highest in the open ocean zone and meteoric meltwater fractions were highest in the coastal and polynya zones, suggesting that potential iron sources may also change on a latitudinal gradient across the study area. Variable phytoplankton community compositions were related to changing sea-ice concentrations, with a typical species succession from sympagic flagellate species (Pyramimonas sp. and Phaeocystis antarctica) to pelagic diatoms (e.g., Dactyliosolen tenuijunctus) observed across the study area. These results fill a spatiotemporal gap in the Southern Ocean, as sea-ice melting plays a larger role in governing phytoplankton bloom dynamics in the future Southern Ocean due to changing sea-ice conditions caused by anthropogenic global warming.

  • Model projections suggest that the continental shelf in the southern Weddell Sea may experience a shift from today's near-freezing temperature to a much warmer state, where warm water floods the shelf and basal melt rates beneath the Filchner Ronne Ice Shelf increase dramatically. Today, the Filchner Trough serves as a conduit for the southward flow of Warm Deep Water (WDW) during summer and, thus, requires continuous monitoring of its hydrographic conditions. An extensive network of moorings was installed at key sites along the inflow pathway from 2017 to 2021, to expand on existing mooring records starting in 2014. The moorings complemented with under-ice profiling floats reveal two inflow pathways, where WDW enters along the eastern flank of the Filchner Trough as well as through a smaller trough east of there. Within the observed period, 2017 and 2018 feature anomalously warm inflows. The inflow is regulated by the heaving of isopycnals over the continental slope, and the southward propagation toward Filchner Ice Shelf is two times faster during these warm years. Furthermore, the warm years coincide with low summer sea ice concentration, which enhances surface stratification through increased freshwater input and modifies sea ice-ocean stresses that both act to lift the warm water layer and increase the temperatures on the continental shelf. Finally, the recent record low sea ice conditions around the Antarctic emphasize the importance of our findings and raise concerns regarding a potentially increasing presence of WDW on the southern Weddell Sea shelf.

  • Did you know that ecosystems support the wellbeing of humans by simply existing? An ecosystem describes the living things in an area, their interactions, and their environment. The ways that ecosystems benefit the wellbeing of humans are called ecosystem services. There are several types of ecosystem services: supporting (they support animals and their homes), provisioning (they provide food and other materials), cultural (they support our hobbies and cultural activities, such as tourism and arts), or regulating (they regulate our climate, for example by taking up carbon dioxide). Understanding the importance of an ecosystem through its ecosystem services helps guide decisions regarding the environment, such as how much fishing or ship traffic should be allowed in an area, or if an area or species should be protected. In this article, we describe the specific ecosystem services of the sea ice and Southern Ocean around Antarctica.

  • Much of the Antarctic coast is covered by seasonal landfast sea ice (fast ice), which serves as an important habitat for ice algae. Fast-ice algae provide a key early season food source for pelagic and benthic food webs, and contribute to biogeochemical cycling in Antarctic coastal ecosystems. Summertime fast ice is undergoing a decline, leading to more seasonal fast ice with unknown impacts on interconnected Earth system processes. Our understanding of the spatiotemporal variability of Antarctic fast ice, and its impact on polar ecosystems is currently limited. Evaluating the overall productivity of fast-ice algae has historically been hampered by limitations in observations and models. By linking new fast-ice extent maps with a one-dimensional sea-ice biogeochemical model, we provide the first estimate of the spatio-seasonal variability of Antarctic fast-ice algal gross primary production (GPP) and its annual primary production on a circum-Antarctic scale. Experiments conducted for the 2005?2006 season provide a mean fast ice-algal production estimate of 2.8 Tg C/y. This estimate represents about 12% of overall Southern Ocean sea-ice algae production (estimated in a previous study), with the mean fast-ice algal production per area being 3.3 times higher than that of pack ice. Our Antarctic fast-ice GPP estimates are probably underestimated in the Ross Sea and Weddell Sea sectors because the sub-ice platelet layer habitats and their high biomass are not considered.

  • Abstract Observed Antarctic sea ice trends up to 2015 have a distinct regional and seasonal pattern, with a loss during austral summer and autumn in the Bellingshausen and Amundsen Seas, and a year-round increase in the Ross Sea. Global climate models generally failed to reproduce the magnitude of sea ice trends implying that the models miss relevant mechanisms. One possible mechanism is basal meltwater, which is generally not included in the current generation of climate models. Previous work on the effects of meltwater on sea ice has focused on thermodynamic processes. However, local freshening also leads to dynamic changes, affecting ocean currents through geostrophic balance. Using a coupled ocean/sea-ice/ice-shelf model, we demonstrate that basal melting can intensify coastal currents in West Antarctica and the westward transport of sea ice. This change in transport results in sea ice anomalies consistent with observations, and may explain the disparity between climate models and observations.

  • Antarctic sea ice plays an important role in Southern Ocean biogeochemistry and mediating Earth's climate system. Yet our understanding of biogeochemical cycling in sea ice is limited by the availability of relevant data over sufficient temporal and spatial scales. Here we present a new publicly available compilation of macronutrient concentration data from Antarctic land-fast sea ice, covering the full seasonal cycle using datasets from around Antarctica, as well as a smaller dataset of macronutrient concentrations in adjacent seawater. We show a strong seasonal cycle whereby nutrient concentrations are high during autumn and winter, due to supply from underlying surface waters, and then are utilised in spring and summer by mixed ice algal communities consisting of diatoms and non-siliceous species. Our data indicate some degree of nutrient limitation of ice algal primary production, with silicon limitation likely being most prevalent, although uncertainties remain around the affinities of sea-ice algae for each nutrient. Remineralisation of organic matter and nutrient recycling drive substantial accumulations of inorganic nitrogen, phosphate and to a lesser extent silicic acid in some ice cores to concentrations far in excess of those in surface waters. Nutrient supply to fast ice is enhanced by brine convection, platelet ice accumulation and incorporation into the ice matrix, and under-ice tidal currents, whilst nutrient adsorption to sea-ice surfaces, formation of biofilms, and abiotic mineral precipitation and dissolution can also influence fast-ice nutrient cycling. Concentrations of nitrate, ammonium and silicic acid were generally higher in fast ice than reported for Antarctic pack ice, and this may support the typically observed higher algal biomass in fast-ice environments.

  • Antarctic Bottom Water (AABW) is pivotal for oceanic heat and carbon sequestrations on multidecadal to millennial timescales. The Weddell Sea contributes nearly a half of global AABW through Weddell Sea Deep Water and denser underlying Weddell Sea Bottom Water that form on the continental shelves via sea-ice production. Here we report an observed 30% reduction of Weddell Sea Bottom Water volume since 1992, with the largest decrease in the densest classes. This is probably driven by a multidecadal reduction in dense-water production over southern continental shelf associated with a >40% decline in the sea-ice formation rate. The ice production decrease is driven by northerly wind trend, related to a phase transition of the Interdecadal Pacific Oscillation since the early 1990s, superposed by Amundsen Sea Low intrinsic variability. These results reveal key influences on exported AABW to the Atlantic abyss and their sensitivity to large-scale, multidecadal climate variability.

  • Sea ice forms a barrier to the exchange of energy, gases, moisture and particles between the ocean and atmosphere around Antarctica. Ice temperature, salinity and the composition of ice crystals determine whether a particular slab of sea ice is habitable for microorganisms and permeable to exchanges between the ocean and atmosphere, allowing, for example, carbon dioxide (CO2) from the atmosphere to be absorbed or outgassed by the ocean. Spring sea ice can have high concentrations of algae and absorb atmospheric CO2. In the summer of 2016?2017 off East Antarctica, we found decayed and porous granular ice layers in the interior of the ice column, which showed high algal pigment concentrations. The maximum chlorophyll a observed in the interior of the ice column was 67.7 ?g/L in a 24% porous granular ice layer between 0.8 and 0.9 m depth in 1.7 m thick ice, compared to an overall mean sea-ice chlorophyll a (± one standard deviation) of 13.5 ± 21.8 ?g/L. We also found extensive surface melting, with instances of snow meltwater apparently percolating through the ice, as well as impermeable superimposed ice layers that had refrozen along with melt ponds on top of the ice. With future warming, the structures we describe here could occur earlier and/or become more persistent, meaning that sea ice would be more often characterized by patchy permeability and interior ice algal accumulations.

  • The past six years have been marked by some of the most dramatic climatic events observed in the Antarctic region in recent history, commencing with the 2017 sea-ice extreme low. The Humpback Whale Sentinel Programme is a circum-polar biomonitoring program for long term surveillance of the Antarctic sea-ice ecosystem. It has previously signalled the extreme La Niña event of 2010/11, and it was therefore of interest to assess the capacity of existing biomonitoring measures under the program to detect the impacts of 2017 anomalous climatic events. Six ecophysiological markers of population adiposity, diet, and fecundity were targeted, as well as calf and juvenile mortality via stranding records. All indicators, with the exception of bulk stable isotope dietary tracers, indicated a negative trend in 2017, whilst C and N bulk stable isotopes appeared to indicate a lag phase resulting from the anomalous year. The collation of multiple biochemical, chemical, and observational lines of evidence via a single biomonitoring platform provides comprehensive information for evidence-led policy in the Antarctic and Southern Ocean region.

  • The Southern Ocean greatly contributes to the regulation of the global climate by controlling important heat and carbon exchanges between the atmosphere and the ocean. Rates of climate change on decadal timescales are therefore impacted by oceanic processes taking place in the Southern Ocean, yet too little is known about these processes. Limitations come both from the lack of observations in this extreme environment and its inherent sensitivity to intermittent processes at scales that are not well captured in current Earth system models. The Southern Ocean Carbon and Heat Impact on Climate programme was launched to address this knowledge gap, with the overall objective to understand and quantify variability of heat and carbon budgets in the Southern Ocean through an investigation of the key physical processes controlling exchanges between the atmosphere, ocean and sea ice using a combination of observational and modelling approaches. Here, we provide a brief overview of the programme, as well as a summary of some of the scientific progress achieved during its first half. Advances range from new evidence of the importance of specific processes in Southern Ocean ventilation rate (e.g. storm-induced turbulence, sea–ice meltwater fronts, wind-induced gyre circulation, dense shelf water formation and abyssal mixing) to refined descriptions of the physical changes currently ongoing in the Southern Ocean and of their link with global climate. This article is part of a discussion meeting issue ‘Heat and carbon uptake in the Southern Ocean: the state of the art and future priorities’.

  • Sea ice kinematics impacts the global ocean–atmosphere system in numerous ways: modification of albedo, ice cover, and ice mass; heat transmission between atmosphere and ocean; and ice thickness distribution. Such research is often conducted using in situ and remotely-sensed observations of ice motion. In recent work, an ice motion product generated from overlapping sections of multiple individual swath pairs – the so-called swath-to-swath (S2S) approach – has been favourably evaluated by buoys in the Arctic. This new product is better able to represent drifting buoy trajectories, however, it has yet to be applied to ice kinematics research. In this study, we investigate the Antarctic sea ice differential kinematic parameters (DKPs) represented by divergence and maximum shear rate computed from the new S2S ice motion product, and compare these with the daily-map (DM)-derived DKP magnitudes. Results indicate that S2S-derived DKP magnitudes are highly timescale-dependent and well represented by an exponential relationship. Furthermore, the exponential DKP curve parameters in this work are shown to correspond well to ice thickness, thus enabling a new class of Antarctic ice thickness proxy observations. This technique lays the groundwork for the possibility of new proxy measurement of ice thickness back to at least 1991, when the high-accuracy S2S measurements of ice motion become available.

  • The East Antarctic Ice Sheet stores a vast amount of freshwater, which makes it the single largest potential contributor to future sea-level rise. However, the lack of well-constrained geological records of past ice sheet changes impedes model validation, hampers mass balance estimates, and inhibits examination of ice loss mechanisms. Here we identify rapid ice-sheet thinning in coastal Dronning Maud Land from Early to Middle Holocene (9000–5000 years ago) using a deglacial chronology based on in situ cosmogenic nuclide surface exposure dates from central Dronning Maud Land, in concert with numerical simulations of regional and continental ice-sheet evolution. Regional sea-level changes reproduced from our refined ice-load history show a highstand at 9000–8000 years ago. We propose that sea-level rise and a concomitant influx of warmer Circumpolar Deep Water triggered ice shelf breakup via the marine ice sheet instability mechanism, which led to rapid thinning of upstream coastal ice sheet sectors.

  • Antarctic sea ice has paradoxically become more extensive over the past four decades despite a warming climate. The regional expression of this trend has been linked to changes in vertical redistribution of ocean heat and large-scale wind-field shifts. However, the short length of modern observations has hindered attempts to attribute this trend to anthropogenic forcing or natural variability. Here, we present two new decadal-resolution records of sea ice and sea surface temperatures that document pervasive regional climate heterogeneity in Indian Antarctic sea-ice cover over the last 2,000 years. Data assimilation of our marine records in a climate model suggests that the reconstructed dichotomous regional conditions were driven by the multi-decadal variability of the El Niño Southern Oscillation and Southern Annular Mode (SAM). For example, during an El Niño/SAM– combination, the northward sea-ice transport was reduced while heat advection from the subtropics to the Southern Ocean increased, which resulted in reduced sea-ice extent in the Indian sector as sea ice was compacted along the Antarctic coast. Our results therefore indicate that natural variability is large in the Southern Ocean and suggest that it has played a crucial role in the recent sea-ice trends and their decadal variability in this region.

  • Knowing the magnitude and timing of pelagic primary production is important for ecosystem and carbon sequestration studies, in addition to providing basic understanding of phytoplankton functioning. In this study we use data from an ecosystem cruise to Kong Håkon VII Hav, in the Atlantic sector of the Southern Ocean, in March 2019 and more than two decades of satellite-derived ocean color to study phytoplankton bloom phenology. During the cruise we observed phytoplankton blooms in different bloom phases. By correlating bloom phenology indices (i.e., bloom initiation and end) based on satellite remote sensing to the timing of changes in environmental conditions (i.e., sea ice, light, and mixed layer depth) we studied the environmental factors that seemingly drive phytoplankton blooms in the area. Our results show that blooms mainly take place in January and February, consistent with previous studies that include the area. Sea ice retreat controls the bloom initiation in particular along the coast and the western part of the study area, whereas bloom end is not primarily connected to sea ice advance. Light availability in general is not appearing to control the bloom termination, neither is nutrient availability based on the autumn cruise where we observed non-depleted macronutrient reservoirs in the surface. Instead, we surmise that zooplankton grazing plays a potentially large role to end the bloom, and thus controls its duration. The spatial correlation of the highest bloom magnitude with marked topographic features indicate that the interaction of ocean currents with sea floor topography enhances primary productivity in this area, probably by natural fertilization. Based on the bloom timing and magnitude patterns, we identified five different bloom regimes in the area. A more detailed understanding of the region will help to highlight areas with the highest relevance for the carbon cycle, the marine ecosystem and spatial management. With this gained understanding of bloom phenology, it will also be possible to study potential shifts in bloom timing and associated trophic mismatch caused by environmental changes.

  • Open-ocean polynyas effectively couple the ocean and atmosphere through large ice-free areas within the sea-ice cover, release vast quantities of oceanic heat, and impact deep ocean ventilation. Changes in polynya activity, particularly in the Weddell Sea, may be key to longer time-scale climate fluctuations, feedbacks and abrupt change. While changes in the occurrence of Weddell Sea polynyas are generally attributed to changes in the atmospheric surface forcing, the role of internal ocean dynamics for polynya variability is not well-resolved. In this study we employ a global coupled ocean-sea ice model with a repeating annual atmospheric cycle to explore changes in Weddell Sea water mass properties, stratification and ocean circulation driven by open-ocean polynyas. During the 1300-year long simulation, two large polynyas occur in the central Weddell Sea. Our results suggest that Weddell polynyas may be triggered without inter-annual changes in the atmospheric forcing. This highlights the role of ocean processes in preconditioning and triggering open-ocean polynyas on multi-centennial time-scales. The simulated polynyas form due to internal ocean-sea ice dynamics associated with a slow build-up and subsequent release of subsurface heat. A strong stratification and weak vertical mixing is necessary for building the subsurface heat reservoir. Once the water column turns unstable, enhanced vertical mixing of warm and saline waters into the surface layer causes efficient sea ice melt and the polynya appears. Subsequent, vigorous deep convection is maintained through upwelling of warm deep water leading to enhanced bottom water formation. We find a cessation of simulated deep convection and polynya activity due to long-term cooling and freshening of the subsurface heat reservoir. As subsurface waters in the Southern Ocean are now becoming warmer and saltier, we speculate that larger and more persistent Weddell polynyas could become more frequent in the future.

Last update from database: 3/1/25, 3:17 AM (UTC)

Explore

Topic

Resource type

Online resource