Antarktis-bibliografi er en database over den norske Antarktis-litteraturen.

Hensikten med bibliografien er å synliggjøre norsk antarktisforskning og annen virksomhet/historie i det ekstreme sør. Bibliografien er ikke komplett, spesielt ikke for nyere forskning, men den blir oppdatert.

Norsk er her definert som minst én norsk forfatter, publikasjonssted Norge eller publikasjon som har utspring i norsk forskningsprosjekt.

Antarktis er her definert som alt sør for 60 grader. I tillegg har vi tatt med Bouvetøya.

Det er ingen avgrensing på språk (men det meste av innholdet er på norsk eller engelsk). Eldre norske antarktispublikasjoner (den eldste er fra 1894) er dominert av kvalfangst og ekspedisjoner. I nyere tid er det den internasjonale polarforskninga som dominerer. Bibliografien er tverrfaglig; den dekker både naturvitenskapene, politikk, historie osv. Skjønnlitteratur er også inkludert, men ikke avisartikler eller upublisert materiale.

Til høyre finner du en «HELP-knapp» for informasjon om søkemulighetene i databasen. Mange referanser har lett synlige lenker til fulltekstversjon av det aktuelle dokumentet. For de fleste tidsskriftartiklene er det også lagt inn sammendrag.

Bibliografien er produsert ved Norsk Polarinstitutts bibliotek.

Your search

Topic
Online resource

Results 22 resources

  • Nitrate in snow is subject to post-depositional processing, which leads to a net loss and redistribution within the snowpack. The relative importance of post-depositional loss processes such as the volatilization of nitric acid (HNO3) and photolysis of nitrate has long been debated. Changes in nitrate and chloride concentrations in the snowpack were investigated at H128 (69°23.584’S, 41°33.712’E), an Antarctic coastal site approximately 100 km from Syowa Station in East Antarctica from December 2015 to February 2016. Results indicate that chloride migrated to deeper sites within the snowpack under the influence of water vapour movement. Moreover, 50% of the nitrate on surface snow was lost to photolysis, and approximately 20% of the nitrate was absent at a depth of 40 cm. To enhance our knowledge of the Antarctic geochemical cycle, this study is the first to suggest chloride ion movement in snowpacks or significant nitrate loss for any Antarctic coastal site.

  • Winter to summer CO2 dynamics within landfast sea ice in McMurdo Sound (Antarctica) were investigated using bulk ice pCO2 measurements, air-snow-ice CO2 fluxes, dissolved inorganic carbon (DIC), total alkalinity (TA), and ikaite saturation state. Our results suggest depth-dependent biotic and abiotic controls that led us to discriminate the ice column in three layers. At the surface, winter pCO2 supersaturation drove CO2 release to the atmosphere while spring-summer pCO2 undersaturation led to CO2 uptake most of the time. CO2 fluxes showed a diel pattern superimposed upon this seasonal pattern which was potentially assigned to either ice skin freeze-thaw cycles or diel changes in net community production. In the ice interior, the pCO2 decrease across the season was driven by physical processes, mainly independent of the autotrophic and heterotrophic phases. Bottom sea ice was characterized by a massive biomass build-up counterintuitively associated with transient heterotrophic activity and nitrate plus nitrite accumulation. This inconsistency is likely related to the formation of a biofilm. This biofilm hosts both autotrophic and heterotrophic activities at the bottom of the ice during spring and may promote calcium carbonate precipitation.

  • Dronning Maud Land (DML) is a key area for the better understanding of the geotectonic history and amalgamation processes of the southern part of Gondwana. Here, we present comprehensive new zircon U–Pb–Hf–O, whole-rock Sm–Nd isotopic and geochemical data for late Neoproterozoic-Cambrian igneous rocks along a profile from central to eastern DML, which provides new insights into the crustal evolution and tectonics of the region. In central DML, magmatism dominantly occurred at 530–485 Ma, with 650–600 Ma charnockite and anorthosite locally distributed at its eastern periphery. In contrast, eastern DML experienced long-term and continuous granitic magmatism from ca. 650 Ma to 500 Ma. In central DML, the 650–600 Ma samples are characterized by highly elevated δ18O (7.5–9.5‰) associated with slightly negative to positive εHf(t) values (−1 to +3), indicating significant addition of high-δ18O crustal components, such as sedimentary material at the margin of the Kalahari Craton. Evolved Hf isotopic signatures (εHf(t) = −15 to −6) and moderately elevated O isotopic data (δ18O = 6–8‰) of the Cambrian granitic rocks from central DML indicate a significant incorporation of the pre-existing, old continental crust. In eastern DML, the suprachondritic Hf–Nd isotope signatures and moderate δ18O values of the late Neoproterozoic granites (650–550 Ma) from the Sør Rondane Mountains support the view that they mainly originated from crust of the Tonian Oceanic Arc Super Terrane (TOAST). The post-540 Ma granites, however, have more evolved Hf and Nd isotopic compositions, suggesting an increasing involvement of older continental components during Cambrian magmatism. Nd isotopes of the Cambrian granitic rocks in DML display an increasingly more radiogenic composition towards the east with model ages ranging from late Archean to Mesoproterozoic times, which is in line with the isotopic trend of the Precambrian basement in this region. The late Neoproterozoic (>600 Ma) igneous rocks in central and eastern DML were emplaced in two independent subduction systems, at the periphery of the eastern Kalahari Craton and somewhere within the Mozambique Ocean respectively. The accretion and assembly of the TOAST to the eastern margin of the Kalahari Craton and their collision with surrounding continental blocks was followed by extensive post-collisional magmatism due to delamination tectonics and orogenic collapse in the Cambrian. The late Neoproterozoic–Cambrian igneous rocks in DML thus record an orogenic cycle from subduction-accretion, continental collision to post-collisional process during and after the assembly of Gondwana.

  • A decrease in biodiversity and density of terrestrial organisms with increasing altitude and latitude is a well-known ecogeographical pattern. However, studies of these trends are often taxonomically-biased toward well-known organisms and especially those with relatively large bodies, and environmental variability at the local scale may perturb these general effects. Here, we focus on understudied organisms—soil invertebrates—in Antarctic deserts, which are among the driest and coldest places on Earth. We sampled two remote Antarctic sites in the Darwin Glacier area and established an altitudinal gradient running from 210 to 836 m a.s.l. We measured soil geochemistry and organic matter content and linked these parameters with the presence of soil invertebrates. We found three general outcomes, two of which are consistent with general assumptions: (a) the hostile climatic condition of the Darwin Glacier region supports an extremely low diversity of soil metazoans represented by a single nematode species—Scottnema lindsayae; (b) soil geochemistry is the main factor influencing distribution of nematodes at the local scale. Contrary to our expectations, a positive correlation was found between nematode density and altitude. This last observation could be explained by an additional effect of soil moisture as we found this increased with altitude and may be caused by orographic clouds, which are present in this region. To the best of our knowledge such effects have been described in tropical and temperate regions. Potential effect of orographic clouds on soil properties in polar deserts may be a fruitful area of ecological research on soil fauna.

  • This article highlights the field geology, geochronology and geochemistry of an important and previously unstudied region between eastern (Sør Rondane Mountains) and central Dronning Maud Land (DML). The area allows the characterisation and ground-truthing of a large and mostly ice-covered area that is geophysically distinct and which was previously interpreted as a potentially older cratonic block south of a Late Neoproterozoic/Early Paleozoic (LN/EP) mobile belt, as exposed in the Sør Rondane Mts. (SRM). SHRIMP/SIMS zircon analyses of 20 samples together with new geochemistry indicate that the exposed basement consists of a ca. 1000–900Ma juvenile terrane that is very similar to the juvenile rocks of the SW-Terrane of the SRM, a characteristic gabbro–trondhjemite–tonalite–granite (GTTG) suite, with normalised trace element patterns typical for subduction-related magmas and mostly positive initial epsilon Nd values. The area shows strong LN/EP crustal reworking, migmatisation and melt production, including 560–530Ma A-type magmatism. Therefore, this area is very similar to the SW-Terrane and differs only in the degree of LN/EP reworking. We interpret the SW-Terrane of Sør Rondane as a mega-boudin sandwiched in between rheologically weaker portions of similar oceanic arc terranes. Therefore, the study area, and thereby the aeromagnetically distinct SE DML province does neither represent the foreland of a LN/EP mobile belt, nor a craton, as speculated based on geophysical data alone. Instead, a large Tonian Oceanic Arc Super Terrane (TOAST) with significant extent emerges. Its western limit is represented by the Forster Magnetic Anomaly, which represents a suture to the Grenville-age Maud Belt. East of the TOAST, the Rayner Complex is similar in age but otherwise distinctly different. The Rayner Complex has a much longer history of island arc accretions with continent–continent collision at ca. 950Ma and it has markedly more evolved crust. In contrast, the TOAST has a pronounced juvenile character without significant inheritance and lacks metamorphic overprint immediately following crust formation. This indicates that it has not been an integral part of Rodinia. The eastern boundary of the TOAST is probably in the vicinity of the Yamato Mts., whilst its northern extension might be seen in the Vohibori Terrane (SW Madagascar), which in turn could correlate with the Arabian Nubian Shield. The LN/EP tectono-metamorphic overprint of the TOAST shows a slight decrease in ages from W to E, possibly indicating that it first amalgamated on its Kalahari side before it was attached to Rukerland/Indo-Antarctica.

  • The glacimarine environment of the Antarctic Peninsula region is one of the fastest warming places on Earth today, but details of changes in the recent past remain unknown. Large distances and widespread variability separate late Holocene palaeoclimate reconstructions in this region. This study focuses on a marine sediment core collected from ca. 2000 m below sea level in the Central Bransfield Strait that serves as a key for understanding changes in this region. The core yielded a high sedimentation rate and therefore provides an exceptional high-resolution sedimentary record composed of hemipelagic sediment, with some turbidites. An age model has been created using radiocarbon dates that span the Late Holocene: 3560 cal yr BP to present. This chronostratigraphic framework was used to establish five units, which are grouped into two super-units: a lower super-unit (3560–1600 cal yr BP) and an upper super-unit (1600 cal yr BP–present), based on facies descriptions, laser particle size analysis, x-ray analysis, multi-sensor core logger data, weight percentages and isotopic values of total organic carbon and nitrogen. We interpret the signal contained within the upper super-unit as an increase in surface water irradiance and/or shortening of the sea-ice season and the five units are broadly synchronous with climatic intervals across the Antarctic Peninsula region. While the general trends of regional climatic periods are represented in the Bransfield Basin core we have examined, each additional record that is obtained adds variability to the known history of the Antarctic Peninsula, rather than clarifying specific trends. Keywords: Antarctic Peninsula; palaeoclimate; Holocene; marine; isotopes.

  • The aim of the study was to specify the concentration of selected chemical elements in surface waters of King George Island, off the western coast of the Antarctic Peninsula. The research encompassed six streams, a lake and an artificial water reservoir located on the western coast of Admiralty Bay. Measured hydrochemical parameters included pH, conductivity, total dissolved solids (TDS), and total and dissolved forms elements such as Al, Co, Ni, Cu, Zn, Cd, Pb, Mn, Fe, As and Se. The values of pH, conductivity and TDS had the following ranges: 6.09–8.21, 6.0–875 µS cm−1 and 7.0–975 mg/L, respectively, and were typical for surface waters of Antarctica. Wide disparities were discovered regarding concentrations of the investigated elements, ranging from <0.01 µg/L for Cd to 510 µg/L for Fe, and differing from one water body to another. The investigated elements are discussed with reference to environmental conditions and anthropogenic factors. Concentrations of total and dissolved forms of elements are considered in connection with the composition of soil in their surroundings and with atmospheric deposition, mostly such as that took place locally. The increased levels of Pb and Zn concentrations in the immediate proximity of a research station suggested anthropogenic contamination. Keywords: Antarctic surface waters; total and dissolved elements; baseline elements values; anthropogenic metal contamination.

  • Data pertaining to environmental conditions, sympagic (sea ice) microalgal dynamics and particle flux were collected before the spring ice break-up 2001 in Pierre Lejay Bay, adjacent to the Dumont d'Urville Station, Petrel Island, East Antarctica. An array of two multiple sediment traps and a current meter was deployed for five weeks, from 8 November to 6 December 2001. The sea-ice chlorophyll a and particulate organic carbon (POC) averaged 0.6 mg l−1 (30 mg m−2) and 20 mg l−1 (1 g m−2) near the coast. The POC export flux that reached a maximum of 79 mg m−2 d−1 during the study period was high compared to the one for the Weddell Sea. The flux was homogeneous from the surface to 47 m depth and increased sharply 33 days before the effective ice break-up. A north-western progressive vector of currents (i.e., Lagrangian drift) in the sub-ice surface waters was demonstrated. Bottom ice, platelet ice and under-ice water at 5 m were characterized by differences in colonization and short-term succession of microalgae. Keywords: Land-fast ice; oceanic short-term regime; POM flux; sympagic communities; East Antarctica.

  • Two sediment cores obtained from the continental shelf of the northern South Shetland Islands, West Antarctica, consist of: an upper unit of silty mud, bioturbated by a sluggish current, and a lower unit of well-sorted, laminated silty mud, attributed to an intensified Polar Slope Current. Geochemical and accelerator mass spectrometry 14C analyses yielded evidence for a late Holocene increase in sea-ice extent and a decrease in phytoplankton productivity, inferred from a reduction in the total organic carbon content and higher C : N ratios, at approximately 330 years B.P., corresponding to the Little Ice Age. Prior to this, the shelf experienced warmer marine conditions, with greater phytoplankton productivity, inferred from a higher organic carbon content and C : N ratios in the lower unit. The reduced abundance of Weddell Sea ice-edge bloom species (Chaetoceros resting spores, Fragilariopsis curta and Fragilariopsis cylindrus) and stratified cold-water species (Rhizosolenia antennata) in the upper unit was largely caused by the colder climate. During the cold period, the glacial restriction between the Weddell Sea and the shelf of the northern South Shetland Islands apparently hindered the influx of ice-edge bloom species from the Weddell Sea into the core site. The relative increases in the abundance of Actinocyclus actinochilus and Navicula glaciei, indigenous to the coastal zone of the South Shetland Islands, probably reflects a reduction in the dilution of native species, resulting from the diminished influx of the ice-edge species from the Weddell Sea. We also document the recent reduction of sea-ice cover in the study area in response to recent warming along the Antarctic Peninsula.

  • The reconstruction of the paleoclimatic and paleoceanographic development of the late Quaternary Southern Ocean and adjacent continental areas in high temporal and spatial resolution is a main goal of our longterm study. During ANT-XX/2 the sedimentary budget of biogenic and terrigenous components and their variability was investigated in cooperation with geochemical projects. Main objectives were the relationships between production of biogenic components and input of terrigenous components and involved nutrients.

  • Sediment textural properties and total organic carbon (TOC) contents of three sediment cores from Maxwell Bay, King George Island, West Antarctica, record changes in Holocene glaciomarine sedimentary environments. The lower sedimentary unit is mostly composed of TOC-poor diamictons, indicating advanced coastal glacier margins and rapid iceberg discharge in proximal glaciomarine settings with limited productivity and meltwater supply. Fine-grained, TOC-rich sediments in the upper lithologic unit suggest more open water and warm conditions, leading to enhanced biological productivity due to increased nutrient-rich meltwater supply into the bay. The relationship between TOC and total sulfur (TS) indicates that the additional sulfur within the sediment has not originated from in situ pyrite formation under the reducing condition, but rather may be attributed to the detrital supply of sand-sized pyrite from the hydrothermal-origin, quartz-pyrite rocks widely distributed in King George Island. The evolution of bottom-water hydrography after deglaciation was recorded in the benthic foraminiferal stable-isotopic composition, corroborated by the TOC and lithologic changes. The Ø18O values indicate that bottom-water in Maxwell Bay was probably mixed gradually with intruding 18O-rich seawater from Bransfield Strait. In addition, the Ø13C values reflect a spatial variability in the carbon isotope distribution in Maxwell Bay, depending on marine productivity as well as terrestrial carbon fluxes by meltwater discharge. The distinct lithologic transition, dated to approximately 8000 yr BP (uncorrected) and characterized by textural and geochemical contrasts, highlights the postglacial environmental change by a major coastal glacier retreat in Maxwell Bay.

  • The Jutulsessen nunataks (72°00′S; 2°30′E), Gjelsvikfjella, Dronning Maud Land (DML), consist mainly of migmatites of two types. A heterogeneous banded amphibolite facies gneisses and a more homogeneous part. In the more homogeneous part, partial melts form along axial planes to tight folds. Numerous pegmatitic dykes occur in both migmatites. The homogeneous part of the migmatite has a granodiorite composition. It displays the depletion of Nb–Ta typical for rocks from destructive plate margins and a strongly fractionated REE pattern, specially in LREE (La/Lu ratios varying between 500 and 800). SIMS dating of zircon from the homogeneous migmatite and two pegmatite dykes resulted in two age groups. A concordant age of 1163±6 Ma is calculated from zircon crystals with no rim/core structure and from cores from structurally complex crystals. This age represents the age of the protolith of the migmatite. A Cambrian age of 504±6 Ma is obtained from zircon rims and from sector-zoned zircons. This age represent the time of migmatisation. Sm–Nd depleted mantle model ages range from 1390 to 1770 Ma and suggest that the protolith to the migmatites contained components of older crust (pre-1163 Ma). An igneous complex consisting of a syenite plug (Stabben syenite), gabbroic rocks and aplitic dykes intrudes the metamorphic complex. The syenite and the aplitic dykes are neither deformed nor migmatised or penetrated by pegmatitic dykes. These rocks have elevated LREE and LILE concentrations with an La/Lu ratio of 450 and an Nb–Ta trough. The gabbroic rocks range in composition from melagabbro to monzogabbro and host numerous pegmatitic dykes. SIMS zircon U–Pb data from the Stabben syenite give an age of 500±8 Ma. This age is regarded as the intrusive age of the Stabben syenite. By the single zircon–Pb evaporation method an age of 495±14 Ma is obtained from the aplitic dykes. Sm–Nd depleted mantle model ages between 1800 and 2220 Ma indicate that the dykes formed from a Paleoproterozoic source. A Mesoproterozoic volcanic arc setting of DML and a correlation with the Natal Province, as suggested by several authors, is supported by data in this study. The studied area has consequently been a part of the Kaapvaal/Kalahari craton since Mesoproterozoic time. The Cambrian migmatisation and the intrusions are interpreted as a result of post-collision activity related to the collision between the Kalahari craton and the combined block of Antarctica and Australia during the final assembly of Gondwana. This collision is suggested to be included in the Kuunga Orogeny introduced by Meerat and Van der Voo [J. Geodynam. 23 (1997) 223].

  • A light, mining drill rig deployed from the stern of a research vessel has been used to carry out shallow drilling in 212 m water depth on the continental shelf in the eastern Weddell Sea. Penetration was 15 m below the seabed with 18% recovery in the 31 hours available for the experiment. The recovered glacigenic sediments are predominantly volcanic material of basaltic and andesitic composition with petrological characteristics and age similar to the continental flood basalts exposed in Vestfjella, about 130 km upstream from the drill site. The sediments include a reworked marine Miocene diatom flora. The material documents oscillations of the East Antarctic Ice Sheet over the past 30 ka. The lowermost diamicton probably represents a deformation till, and the grounding line retreated past the drill site 30 km from the shelf edge about 30 kyr BP. A readvance occurred during the Late Wisconsin Glacial Maximum. Assuming a reservoir correction of 1300 yr, marine conditions existed at the site between 10.1-7 kyr BP, and later at least between 2.8 and 2.5 kyr BP. The stratigraphy at the site has been disturbed by iceberg ploughing and/or contact between the ice shelf and the sea floor during local advances after 2.5 kyr BP.

  • Continental flood basalts (CFBs) of Jurassic age make up the Vestfjella mountains of western Dronning Maud Land and demonstrate an Antarctic extension of the Karoo large igneous province. A detailed geochemical study of the 120-km-long Vestfjella range shows the CFB suite to consist mainly of three intercalated basaltic rock types designated CT1, CT2 and CT3 (chemical types 1, 2 and 3) that exhibit different incompatible trace element ratios. CT1 and CT2 of north Vestfjella record wide ranges of Nd and Sr isotopic compositions with initial εNd and εSr ranging from +7·6 to −16·0 and −16 to +65, respectively. The southern Vestfjella is dominated by CT3 with near-chondritic εNd (+2·0 to −4·1) and εSr (−11 to +19). A volumetrically minor suite of ocean island basalt (OIB-)like CT4 dykes (εNd +3·6, εSr +1) cuts the lava sequence in north Vestfjella. The pronounced isotopic differences suggest different magmatic plumbing systems for the heterogeneous CT1 and CT2 suites and the relatively homogeneous CT3 lavas. This is further supported by the palaeoflow directions, which point to major source regions to the north (CT1 and CT2) and east (CT3) of Vestfjella. These source regions can be associated with two contemporaneous major lithospheric thinning zones that permitted magma emplacement and controlled the melting of upper-mantle sources in the Jurassic Dronning Maud Land. The CT1 and CT2 magmas utilized the northern zone of thinning and were emplaced into the 3 Ga Grunehogna craton, whereas the CT3 magmas were emplaced through thinned Proterozoic Maud Belt lithosphere. Trace element and isotopic studies of the identified magma types reveal a complex history of fractionation and contamination at different lithospheric levels. All extrusive rock types show evidence of crustal contamination but this had rather small impact on their diagnostic trace element ratios. Much stronger overprint, in the CT1 and CT2 suites, resulted from contamination with veined Archaean lithospheric mantle, which produced wide ranges of isotopic and highly incompatible element ratios. CT3, in turn, does not show evidence of interaction with the Proterozoic lithospheric mantle. The high-εNd endmembers of CT1, CT2 and CT3 probably closely resemble uncontaminated mantle-derived magmas and indicate three different mantle sources. The CT2 primary magmas were derived from light rare earth element (LREE)-depleted, slightly large ion lithophile element (LILE)-enriched sources, whereas data on the volumetrically preponderant CT1 and CT3 point to variably LREE-enriched, strongly LILE-enriched sources. The sources of CT1, CT2 and CT3 may record large-scale lateral heterogeneity generated by subduction-contamination of the Gondwanan upper mantle. The OIB-like CT4 dykes probably reflect asthenospheric heterogeneities that were unrelated to the proposed subduction-contamination.

  • As part of the pre-site survey in Dronning Maud Land for the European Project for Ice Goring in Antarctica (EPICA), the spatial variability of snow-layer thickness and snow chemistry was studied at two geographically different ice-core drill sites. The study aimed to quantify error bars on accumulation rates derived from firn and ice cores. One site is located on the polar plateau at Amundsenisen (76° S, 8° W) and the other in the coastal area at Maudheimvidda (73° S, 13° W). Medium-deep ice cores (100 m) and shallow firn cores (10-20 m) were drilled and snow pits (0.5-2 5 m) were dug at each site. At Amundsenisen a large (16 m x 6 m x 2.5 m deep) snow pit was dug. Snow structure in this large snow pit was mapped using optical surveying equipment, and photographically documented. Samples for analysis of nine ions and oxygen isotopes were collected along one depth profile. Density and in situ electrical conductivity measurements were made along three depth profiles! Snow-layer variability was studied in two different areas and at two different scales. At a regional scale, measured by snow-radar soundings, the variability was 8% on the polar plateau and 45% in the coastal area. The variability at a micro-scale in the large snow pit was 9%. The results indicate that ice cores from the polar plateau are more representative for a larger area than ice cores drilled in the coastal area There is no doubt that there are significant error bars on high-resolution accumulation data received from firn and ice cores, especially from the coastal area, but averaging over tens of years reduces the error in accumulation estimates.

  • Whole rock and mineral compositions of volcanic rocks collected during the Norwegian Polarsirkel expedition (1978/79) to the volcanic istand of Bovetøya (close to the Bouvet Triple Junction) are discussed and compared with previously published data from the island. The rock types, hawaiite, benmoreite, and peralkaline trachyte and rhyolite (comendite) are related to each other by crystal fractionation processes. The trace element and radiogenic isotope signatures displayed by the Bouvetøya rocks are those of a moderately enriched oceanic island suite. On several isotope plots Bouvetøya rocks fall on or close to mixing lines between the euriched EM-l and HIMU mantle components. Mixing between depleted morb mantle (DMM) and euriched components is not likely. Thus, Bouvetøya displays a typical plume signature.

  • During the austral summer 1993/1994, the spatial distribution of snow was mapped by a ground-based snow radar (800–2300 MHz) in western Dronning Maud Land, East Antarctica. Snow radar soundings were performed along continuous profiles extending from the ice shelf up to the polar plateau, a total distance of 1040 km. The high-resolution radar registrations revealed subsurface layering in the uppermost 12 m of the snowpack. The travel time record was translated into snow accumulation expressed in water equivalents, based on an empirical relationship between wave speed and firn density. A good knowledge on snow density variations with depth is essential for the variability studies. Generally, the snow layering was well developed in the coastal area and less well developed on the polar plateau. High spatial variability in snow accumulation was observed on a regional as well as on a local scale. The variability was very high in areas with large surface slopes, such as the grounding zone and around nunataks. The highest variability was recorded in the nunatak area, where the standard deviation reached 59% of the spatial average accumulation. On the smooth high-altitude plateau, variations in accumulation were less pronounced. However, here the standard deviation exceeded 22% of the average accumulation rate. Provided that the snow radar soundings are supported by dating of reference horizons along the travel route, this is a good method to obtain the accumulation rate and pattern for large areas with a high spatial resolution.

  • The central sector of Mühlig-Hofmannfjellet (3°E/71°S) in western Dronning Maud Land (East Antarctic shield) is dominated by large intrusive bodies of predominantly orthopyroxene-bearing quartz syenites (charnockites). Metasedimentary rocks are rare; however, two distinct areas with banded gneiss–marble–quartzite sequences of sedimentary origin were found during the Norwegian Antarctic Research Expedition NARE 1989/90. Cordierite-bearing metapelitic gneisses from two different localities contain the characteristic mineral assemblage: cordierite + garnet + biotite + K-feldspar + plagioclase + quartz ± sillimanite ± spinel. Thermobarometry indicates equilibration conditions of about 650°C and 4 kbar. Associated orthopyroxene–garnet granulites, on the other hand, revealed pressures of about 8 kbar and temperatures of 750°C. The earlier granulite facies metamorphism is not well preserved in the cordierite gneisses as a result of excess K-feldspar combined with interaction with an H2O-rich fluid phase, probably released by the cooling intrusives. These two features allowed the original high-grade K-feldspar + garnet assemblages to recrystallize as cordierite–biotite–sillimanite gneisses, completely re-equilibrating them. Phase relationships indicate that the younger metamorphic event occurred in the presence of a fluid phase that varied in composition between the lithologies.

  • K-Ar ages, major- and trace-element compositions, and Sr-isotope data are presented for basalt lavas from Vestfjella, Dronning Maud Land, Antarctica. The new conventional K-Ar age data have yielded ages from 171 ± 2 to 695 ± 11 Ma, but the youngest (i.e. Middle Jurassic) ages are preferred. Mineralogical and chemical data show that the majority of the basalts are tholeiites. Petrographic mixing calculations, REE modelling, and the Sr isotope data suggest that they were derived by partial melting of garnet-free lherzolites with variable REE patterns, and subsequently modified by fractionation of olivine, Ca-rich pyroxene and plagioclase. Incompatible trace-element data from nearby Middle Jurassic basalt lavas (from Kirwanryggen and Heimefrontfjella) suggest a different source and REE modelling indicates generation from garnet lherzolites.

  • The distribution with depth of seven different ions in three snow profiles, 1, 60 and 120km from the coast on Riiser-Larsenisen Ice Shelf (72° 30′ S, 15°E) shows a close co-variation between ions of marine origin and non-correlation between these ions and ions of presumptively non-marine origin. The deposition rates of ions of marine origin vary as 50:1 over some 120 km distance from the coast. The SO42−Na+ ratio in snow near the coast is lower than for bulk sea water indicating a loss of SO42− in snow to the atmosphere by volatilization.

Last update from database: 3/1/25, 3:17 AM (UTC)

Explore

Topic

Resource type

Online resource